基于海上风电场的岛式绿色氢气系统的经济性能改进与分析

Energies Pub Date : 2024-07-14 DOI:10.3390/en17143460
Wei Feng, Liu Yang, Kai Sun, Yuebin Zhou, Zhiyong Yuan
{"title":"基于海上风电场的岛式绿色氢气系统的经济性能改进与分析","authors":"Wei Feng, Liu Yang, Kai Sun, Yuebin Zhou, Zhiyong Yuan","doi":"10.3390/en17143460","DOIUrl":null,"url":null,"abstract":"When offshore wind farms are connected to a hydrogen plant with dedicated transmission lines, for example, high-voltage direct current, the fluctuation of wind speed will influence the efficiency of the alkaline electrolyzer and deteriorate the techno-economic performance. To overcome this issue, firstly, an additional heating process is adopted to achieve insulation for the alkaline solution when power generated by wind farms is below the alkaline electrolyzer minimum power threshold, while the alkaline electrolyzer overload feature is used to generate hydrogen when wind power is at its peak. Then, a simplified piecewise model-based alkaline electrolyzer techno-economic analysis model is proposed. The improved economic performance of the islanded green hydrogen system with the proposed operation strategy is verified based on the wind speed data set simulation generated by the Weibull distribution. Lastly, the sensitivity of the total return on investment to wind speed parameters was investigated, and an islanded green hydrogen system capacity allocation based on the proposed analysis model was conducted. The simulation result shows the total energy utilization increased from 62.0768% to 72.5419%, and the return on investment increased from 5.1303%/month to 5.9581%/month when the proposed control strategy is adopted.","PeriodicalId":504870,"journal":{"name":"Energies","volume":"5 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Economic Performance Improving and Analysis for Offshore Wind Farm-Based Islanded Green Hydrogen System\",\"authors\":\"Wei Feng, Liu Yang, Kai Sun, Yuebin Zhou, Zhiyong Yuan\",\"doi\":\"10.3390/en17143460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When offshore wind farms are connected to a hydrogen plant with dedicated transmission lines, for example, high-voltage direct current, the fluctuation of wind speed will influence the efficiency of the alkaline electrolyzer and deteriorate the techno-economic performance. To overcome this issue, firstly, an additional heating process is adopted to achieve insulation for the alkaline solution when power generated by wind farms is below the alkaline electrolyzer minimum power threshold, while the alkaline electrolyzer overload feature is used to generate hydrogen when wind power is at its peak. Then, a simplified piecewise model-based alkaline electrolyzer techno-economic analysis model is proposed. The improved economic performance of the islanded green hydrogen system with the proposed operation strategy is verified based on the wind speed data set simulation generated by the Weibull distribution. Lastly, the sensitivity of the total return on investment to wind speed parameters was investigated, and an islanded green hydrogen system capacity allocation based on the proposed analysis model was conducted. The simulation result shows the total energy utilization increased from 62.0768% to 72.5419%, and the return on investment increased from 5.1303%/month to 5.9581%/month when the proposed control strategy is adopted.\",\"PeriodicalId\":504870,\"journal\":{\"name\":\"Energies\",\"volume\":\"5 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/en17143460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/en17143460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当海上风电场通过专用输电线路(如高压直流电)与制氢装置连接时,风速的波动会影响碱性电解槽的效率,并降低技术经济性能。为克服这一问题,首先,在风电场发电量低于碱性电解槽最小功率阈值时,采用额外的加热过程来实现碱性溶液的绝缘,而在风电达到峰值时,则利用碱性电解槽的过载特性来产生氢气。然后,提出了基于简化片断模型的碱性电解槽技术经济分析模型。基于由 Weibull 分布生成的风速数据集模拟,验证了采用所提运行策略的孤岛式绿色制氢系统经济性能的改善。最后,研究了总投资回报率对风速参数的敏感性,并根据提出的分析模型进行了孤岛绿色制氢系统容量分配。仿真结果表明,采用建议的控制策略后,总能源利用率从 62.0768% 提高到 72.5419%,投资回报率从 5.1303%/月提高到 5.9581%/月。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Economic Performance Improving and Analysis for Offshore Wind Farm-Based Islanded Green Hydrogen System
When offshore wind farms are connected to a hydrogen plant with dedicated transmission lines, for example, high-voltage direct current, the fluctuation of wind speed will influence the efficiency of the alkaline electrolyzer and deteriorate the techno-economic performance. To overcome this issue, firstly, an additional heating process is adopted to achieve insulation for the alkaline solution when power generated by wind farms is below the alkaline electrolyzer minimum power threshold, while the alkaline electrolyzer overload feature is used to generate hydrogen when wind power is at its peak. Then, a simplified piecewise model-based alkaline electrolyzer techno-economic analysis model is proposed. The improved economic performance of the islanded green hydrogen system with the proposed operation strategy is verified based on the wind speed data set simulation generated by the Weibull distribution. Lastly, the sensitivity of the total return on investment to wind speed parameters was investigated, and an islanded green hydrogen system capacity allocation based on the proposed analysis model was conducted. The simulation result shows the total energy utilization increased from 62.0768% to 72.5419%, and the return on investment increased from 5.1303%/month to 5.9581%/month when the proposed control strategy is adopted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信