Yanwei Liu, Mingda Wang, Jialuo Tan, Jie Ye, Jiansheng Liang
{"title":"基于 DP 和规则提取的燃料电池汽车实时能源管理策略","authors":"Yanwei Liu, Mingda Wang, Jialuo Tan, Jie Ye, Jiansheng Liang","doi":"10.3390/en17143465","DOIUrl":null,"url":null,"abstract":"Energy management strategy (EMS), as a core technology in fuel cell vehicles (FCVs), profoundly influences the lifespan of fuel cells and the economy of the vehicle. Aiming at the problem of the EMS of FCVs based on a global optimization algorithm not being applicable in real-time, a rule extraction-based EMS is proposed for fuel cell commercial vehicles. Based on the results of the dynamic programming (DP) algorithm in the CLTC-C cycle, the deep learning approach is employed to extract output power rules for fuel cell, leading to the establishment of a rule library. Using this library, a real-time applicable rule-based EMS is designed. The simulated driving platform is built in a CARLA, SUMO, and MATLAB/Simulink joint simulation environment. Simulation results indicate that the proposed strategy yields savings ranging from 3.64% to 8.96% in total costs when compared to the state machine-based strategy.","PeriodicalId":504870,"journal":{"name":"Energies","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Energy Management Strategy for Fuel Cell Vehicles Based on DP and Rule Extraction\",\"authors\":\"Yanwei Liu, Mingda Wang, Jialuo Tan, Jie Ye, Jiansheng Liang\",\"doi\":\"10.3390/en17143465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy management strategy (EMS), as a core technology in fuel cell vehicles (FCVs), profoundly influences the lifespan of fuel cells and the economy of the vehicle. Aiming at the problem of the EMS of FCVs based on a global optimization algorithm not being applicable in real-time, a rule extraction-based EMS is proposed for fuel cell commercial vehicles. Based on the results of the dynamic programming (DP) algorithm in the CLTC-C cycle, the deep learning approach is employed to extract output power rules for fuel cell, leading to the establishment of a rule library. Using this library, a real-time applicable rule-based EMS is designed. The simulated driving platform is built in a CARLA, SUMO, and MATLAB/Simulink joint simulation environment. Simulation results indicate that the proposed strategy yields savings ranging from 3.64% to 8.96% in total costs when compared to the state machine-based strategy.\",\"PeriodicalId\":504870,\"journal\":{\"name\":\"Energies\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/en17143465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/en17143465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-Time Energy Management Strategy for Fuel Cell Vehicles Based on DP and Rule Extraction
Energy management strategy (EMS), as a core technology in fuel cell vehicles (FCVs), profoundly influences the lifespan of fuel cells and the economy of the vehicle. Aiming at the problem of the EMS of FCVs based on a global optimization algorithm not being applicable in real-time, a rule extraction-based EMS is proposed for fuel cell commercial vehicles. Based on the results of the dynamic programming (DP) algorithm in the CLTC-C cycle, the deep learning approach is employed to extract output power rules for fuel cell, leading to the establishment of a rule library. Using this library, a real-time applicable rule-based EMS is designed. The simulated driving platform is built in a CARLA, SUMO, and MATLAB/Simulink joint simulation environment. Simulation results indicate that the proposed strategy yields savings ranging from 3.64% to 8.96% in total costs when compared to the state machine-based strategy.