通过数据挖掘识别老年人抑郁模式

L. E. Zárate, Arthur Vinicius Dimas dos Santos, Jefferson Eduardo de Carvalho Camelo, C. N. Nobre, Mark Alan Junho Song
{"title":"通过数据挖掘识别老年人抑郁模式","authors":"L. E. Zárate, Arthur Vinicius Dimas dos Santos, Jefferson Eduardo de Carvalho Camelo, C. N. Nobre, Mark Alan Junho Song","doi":"10.59681/2175-4411.v16.2024.1020","DOIUrl":null,"url":null,"abstract":"Objetivo: Identificar padrões de depressão em idosos baseado em variáveis exógenas por meio da mineração de dados. Métodos: O processo aplica técnica de classificação Floresta Aleatória para descrever os padrões de depressão nessa população. Como fonte de dados considera-se a base de dados PNS, IBGE 2013. Resultados: Os resultados evidenciam como fatores relevantes, doenças crônicas pré-existentes, o nível de confiança com amigos e parentes, nível de escolaridade, etc. Para o grupo diagnosticado “Com depressão”, a precisão do modelo foi de 68,8%, sensibilidade de 77,2% e medida F1-score de 72,8%. Para o grupo diagnosticado “Sem depressão”, a precisão foi de 66,4%, Sensibilidade de 56,2% e a medida F1-score de 60,9%. Conclusão: Dentre os fatores destacam-se, em nível de importância, doença crônica pré-existente, um ou nenhum parente ou amigo em quem confiar, e escolaridade até o ensino médio. A prática de exercícios físicos e manter-se ativo é um aspecto favorável para a não-depressão.","PeriodicalId":91119,"journal":{"name":"Journal of health informatics","volume":"11 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identificando padrões de depressão em idosos por meio de mineração de dados\",\"authors\":\"L. E. Zárate, Arthur Vinicius Dimas dos Santos, Jefferson Eduardo de Carvalho Camelo, C. N. Nobre, Mark Alan Junho Song\",\"doi\":\"10.59681/2175-4411.v16.2024.1020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objetivo: Identificar padrões de depressão em idosos baseado em variáveis exógenas por meio da mineração de dados. Métodos: O processo aplica técnica de classificação Floresta Aleatória para descrever os padrões de depressão nessa população. Como fonte de dados considera-se a base de dados PNS, IBGE 2013. Resultados: Os resultados evidenciam como fatores relevantes, doenças crônicas pré-existentes, o nível de confiança com amigos e parentes, nível de escolaridade, etc. Para o grupo diagnosticado “Com depressão”, a precisão do modelo foi de 68,8%, sensibilidade de 77,2% e medida F1-score de 72,8%. Para o grupo diagnosticado “Sem depressão”, a precisão foi de 66,4%, Sensibilidade de 56,2% e a medida F1-score de 60,9%. Conclusão: Dentre os fatores destacam-se, em nível de importância, doença crônica pré-existente, um ou nenhum parente ou amigo em quem confiar, e escolaridade até o ensino médio. A prática de exercícios físicos e manter-se ativo é um aspecto favorável para a não-depressão.\",\"PeriodicalId\":91119,\"journal\":{\"name\":\"Journal of health informatics\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of health informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59681/2175-4411.v16.2024.1020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of health informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59681/2175-4411.v16.2024.1020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:利用数据挖掘技术,根据外生变量确定老年人抑郁的模式。方法:该过程采用随机森林分类技术来描述该人群的抑郁模式。数据来源是 2013 年巴西地理统计局的 PNS 数据库。结果结果表明,相关因素包括原有慢性疾病、对亲友的信任程度、受教育程度等。对于被诊断为 "患有抑郁症 "的群体,模型的准确率为 68.8%,灵敏度为 77.2%,F1 分数为 72.8%。对于诊断为 "无抑郁症 "的组别,准确率为 66.4%,灵敏度为 56.2%,F1 评分为 60.9%。结论:最重要的因素是已有慢性疾病、有或没有可倾诉的亲戚或朋友以及高中学历。进行体育锻炼和保持活跃是不抑郁的有利因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identificando padrões de depressão em idosos por meio de mineração de dados
Objetivo: Identificar padrões de depressão em idosos baseado em variáveis exógenas por meio da mineração de dados. Métodos: O processo aplica técnica de classificação Floresta Aleatória para descrever os padrões de depressão nessa população. Como fonte de dados considera-se a base de dados PNS, IBGE 2013. Resultados: Os resultados evidenciam como fatores relevantes, doenças crônicas pré-existentes, o nível de confiança com amigos e parentes, nível de escolaridade, etc. Para o grupo diagnosticado “Com depressão”, a precisão do modelo foi de 68,8%, sensibilidade de 77,2% e medida F1-score de 72,8%. Para o grupo diagnosticado “Sem depressão”, a precisão foi de 66,4%, Sensibilidade de 56,2% e a medida F1-score de 60,9%. Conclusão: Dentre os fatores destacam-se, em nível de importância, doença crônica pré-existente, um ou nenhum parente ou amigo em quem confiar, e escolaridade até o ensino médio. A prática de exercícios físicos e manter-se ativo é um aspecto favorável para a não-depressão.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信