Parastoo Jafarzadeh, F. Ensan, Mahdiyar Ali Akbar Alavi, Fattane Zarrinkalam
{"title":"用于回答事实实体问题的知识图谱嵌入模型","authors":"Parastoo Jafarzadeh, F. Ensan, Mahdiyar Ali Akbar Alavi, Fattane Zarrinkalam","doi":"10.1145/3678003","DOIUrl":null,"url":null,"abstract":"Factoid entity questions (FEQ), which seek answers in the form of a single entity from knowledge sources such as DBpedia and Wikidata, constitute a substantial portion of user queries in search engines. This paper introduces the Knowledge Graph Embedding model for Factoid Entity Question answering (KGE-FEQ). Leveraging a textual knowledge graph derived from extensive text collections, KGE-FEQ encodes textual relationships between entities. The model employs a two-step process: (1) Triple Retrieval, where relevant triples are retrieved from the textual knowledge graph based on semantic similarities to the question, and (2) Answer Selection, where a knowledge graph embedding approach is utilized for answering the question. This involves positioning the embedding for the answer entity close to the embedding of the question entity, incorporating a vector representing the question and textual relations between entities. Extensive experiments evaluate the performance of the proposed approach, comparing KGE-FEQ to state-of-the-art baselines in factoid entity question answering and the most advanced open-domain question answering techniques applied to FEQs. The results show that KGE-FEQ outperforms existing methods across different datasets. Ablation studies highlights the effectiveness of KGE-FEQ when both the question and textual relations between entities are considered for answering questions.","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Knowledge Graph Embedding Model for Answering Factoid Entity Questions\",\"authors\":\"Parastoo Jafarzadeh, F. Ensan, Mahdiyar Ali Akbar Alavi, Fattane Zarrinkalam\",\"doi\":\"10.1145/3678003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Factoid entity questions (FEQ), which seek answers in the form of a single entity from knowledge sources such as DBpedia and Wikidata, constitute a substantial portion of user queries in search engines. This paper introduces the Knowledge Graph Embedding model for Factoid Entity Question answering (KGE-FEQ). Leveraging a textual knowledge graph derived from extensive text collections, KGE-FEQ encodes textual relationships between entities. The model employs a two-step process: (1) Triple Retrieval, where relevant triples are retrieved from the textual knowledge graph based on semantic similarities to the question, and (2) Answer Selection, where a knowledge graph embedding approach is utilized for answering the question. This involves positioning the embedding for the answer entity close to the embedding of the question entity, incorporating a vector representing the question and textual relations between entities. Extensive experiments evaluate the performance of the proposed approach, comparing KGE-FEQ to state-of-the-art baselines in factoid entity question answering and the most advanced open-domain question answering techniques applied to FEQs. The results show that KGE-FEQ outperforms existing methods across different datasets. Ablation studies highlights the effectiveness of KGE-FEQ when both the question and textual relations between entities are considered for answering questions.\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3678003\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3678003","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Knowledge Graph Embedding Model for Answering Factoid Entity Questions
Factoid entity questions (FEQ), which seek answers in the form of a single entity from knowledge sources such as DBpedia and Wikidata, constitute a substantial portion of user queries in search engines. This paper introduces the Knowledge Graph Embedding model for Factoid Entity Question answering (KGE-FEQ). Leveraging a textual knowledge graph derived from extensive text collections, KGE-FEQ encodes textual relationships between entities. The model employs a two-step process: (1) Triple Retrieval, where relevant triples are retrieved from the textual knowledge graph based on semantic similarities to the question, and (2) Answer Selection, where a knowledge graph embedding approach is utilized for answering the question. This involves positioning the embedding for the answer entity close to the embedding of the question entity, incorporating a vector representing the question and textual relations between entities. Extensive experiments evaluate the performance of the proposed approach, comparing KGE-FEQ to state-of-the-art baselines in factoid entity question answering and the most advanced open-domain question answering techniques applied to FEQs. The results show that KGE-FEQ outperforms existing methods across different datasets. Ablation studies highlights the effectiveness of KGE-FEQ when both the question and textual relations between entities are considered for answering questions.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.