液体火箭发动机冷却系统亚临界流动的均相平衡建模

IF 1.1 4区 工程技术 Q4 ENGINEERING, MECHANICAL
Matteo Fiore, Francesco Nasuti, M. Pizzarelli, N. Ierardo
{"title":"液体火箭发动机冷却系统亚临界流动的均相平衡建模","authors":"Matteo Fiore, Francesco Nasuti, M. Pizzarelli, N. Ierardo","doi":"10.2514/1.t6919","DOIUrl":null,"url":null,"abstract":"During off-design operations of liquid rocket engines, the coolant operating conditions can easily extend from the subcritical to the supercritical regime. As a matter of fact, it is very useful to have a single software able to study the flow in this range of operating conditions, providing reliable simulations that are reasonably quick and able to accurately estimate and assess the increase in coolant temperature along the channel and the wall temperature field. This objective is pursued by extending an established approach for the study of supercritical flows to the case of subcritical heating, where a two-phase flow may occur. This is done by exploiting the so-called homogeneous equilibrium model, which has been shown to be sufficiently predictive and accurate for specific applications. With the aim of demonstrating and discussing the potential and limitations of such a single software approach, analyses are conducted on different test cases where two-phase flow is induced by cavitation or flow boiling, and results are compared with those of analytical models and experimental data. It is found that, in addition to some intrinsic limitations in the analysis of subcooled boiling flows, satisfactory agreement with experimental data is obtained in the post-critical-heat-flux regime.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneous Equilibrium Modeling for Subcritical Flows in Liquid Rocket Engine Cooling Systems\",\"authors\":\"Matteo Fiore, Francesco Nasuti, M. Pizzarelli, N. Ierardo\",\"doi\":\"10.2514/1.t6919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During off-design operations of liquid rocket engines, the coolant operating conditions can easily extend from the subcritical to the supercritical regime. As a matter of fact, it is very useful to have a single software able to study the flow in this range of operating conditions, providing reliable simulations that are reasonably quick and able to accurately estimate and assess the increase in coolant temperature along the channel and the wall temperature field. This objective is pursued by extending an established approach for the study of supercritical flows to the case of subcritical heating, where a two-phase flow may occur. This is done by exploiting the so-called homogeneous equilibrium model, which has been shown to be sufficiently predictive and accurate for specific applications. With the aim of demonstrating and discussing the potential and limitations of such a single software approach, analyses are conducted on different test cases where two-phase flow is induced by cavitation or flow boiling, and results are compared with those of analytical models and experimental data. It is found that, in addition to some intrinsic limitations in the analysis of subcooled boiling flows, satisfactory agreement with experimental data is obtained in the post-critical-heat-flux regime.\",\"PeriodicalId\":17482,\"journal\":{\"name\":\"Journal of Thermophysics and Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermophysics and Heat Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.t6919\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6919","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在液体火箭发动机的非设计运行期间,冷却剂的工作条件很容易从亚临界状态扩展到超临界状态。事实上,如果有一个软件能够研究这一系列工作条件下的流动,提供可靠的模拟,并且能够准确估计和评估冷却剂温度沿通道和壁面温度场的增加,那将是非常有用的。为了实现这一目标,我们将研究超临界流动的既定方法扩展到可能出现两相流动的亚临界加热情况。这是通过利用所谓的均相平衡模型来实现的,该模型已被证明对特定应用具有足够的预测性和准确性。为了展示和讨论这种单一软件方法的潜力和局限性,对气蚀或流动沸腾诱发两相流的不同测试案例进行了分析,并将结果与分析模型和实验数据进行了比较。结果发现,除了在分析过冷沸腾流时存在一些固有的局限性外,在后临界热流状态下,分析结果与实验数据的一致性还是令人满意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogeneous Equilibrium Modeling for Subcritical Flows in Liquid Rocket Engine Cooling Systems
During off-design operations of liquid rocket engines, the coolant operating conditions can easily extend from the subcritical to the supercritical regime. As a matter of fact, it is very useful to have a single software able to study the flow in this range of operating conditions, providing reliable simulations that are reasonably quick and able to accurately estimate and assess the increase in coolant temperature along the channel and the wall temperature field. This objective is pursued by extending an established approach for the study of supercritical flows to the case of subcritical heating, where a two-phase flow may occur. This is done by exploiting the so-called homogeneous equilibrium model, which has been shown to be sufficiently predictive and accurate for specific applications. With the aim of demonstrating and discussing the potential and limitations of such a single software approach, analyses are conducted on different test cases where two-phase flow is induced by cavitation or flow boiling, and results are compared with those of analytical models and experimental data. It is found that, in addition to some intrinsic limitations in the analysis of subcooled boiling flows, satisfactory agreement with experimental data is obtained in the post-critical-heat-flux regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermophysics and Heat Transfer
Journal of Thermophysics and Heat Transfer 工程技术-工程:机械
CiteScore
3.50
自引率
19.00%
发文量
95
审稿时长
3 months
期刊介绍: This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信