David O'Reilly, Caroline L. O’Leary, Aislinn Reilly, Min Yuen Teo, Grainne O’Kane, Lizza Hendriks, Kathleen Bennett, Jarushka Naidoo
{"title":"免疫检查点抑制剂和酪氨酸激酶抑制剂联合疗法在实体瘤中的毒性:系统综述和荟萃分析","authors":"David O'Reilly, Caroline L. O’Leary, Aislinn Reilly, Min Yuen Teo, Grainne O’Kane, Lizza Hendriks, Kathleen Bennett, Jarushka Naidoo","doi":"10.3389/fonc.2024.1380453","DOIUrl":null,"url":null,"abstract":"The combination of immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) can be associated with significant toxicity. We performed a systematic review and meta-analysis of the toxicity of combination treatment of ICIs with TKIs (ICI + TKI) in clinical trials with solid organ malignancies. Our primary endpoint explored the incidence of grade 3 - 5 (G3-5) treatment-related toxicity and our secondary endpoints included the incidence of toxicity by treatment type, disease type and studies with run-in strategies. A total of 9750 abstracts were identified, of which 72 eligible studies were included. The most common disease types were non-small cell lung cancer (n=8, 11.1%), renal cell carcinoma (n=10, 13.8%) and hepatobiliary cancers (n=10, 13.8%). The overall incidence of G3-5 toxicity was 56% (95% CI = 50% – 61%). The most common TKIs combined with ICIs in this analysis were multi-targeted TKIs (n = 52, 72%), VEGF specific (n = 9, 12.5%), or oncogene-targeting TKIs (EGFR, ALK, BRAF, MEK) (n =11, 15.3%). Oncogene-targeted TKIs were associated a higher incidence of rashes and immune related adverse events (irAEs) and lower incidence of hypertension. In studies which used a TKI ‘run-in’ to mitigate toxicity, the pooled estimate of G3-5 toxicity was 71% (95% CI 57-81%). Almost half of studies (48%) omitted the incidence of G3-5 irAEs. Our work suggests that the majority of patients who receive ICI-TKI combinations will experience high grade toxicity (G3-G5) and that toxicity may be specific to TKI partner (Oncogene targeted TKIs: Rash, irAEs; VEGF/Multitargeted: Hypertension). These data did not suggest that a TKI ‘run-in’ was associated with a lower incidence of G3-5 toxicity. Reporting of irAEs was inconsistent supporting the need for harmonisation of adverse event reporting to include onset, duration and treatment.https://www.crd.york.ac.uk/prospero/, identifier CRD42022367416.","PeriodicalId":507440,"journal":{"name":"Frontiers in Oncology","volume":"5 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicity of immune checkpoint inhibitors and tyrosine kinase inhibitor combinations in solid tumours: a systematic review and meta-analysis\",\"authors\":\"David O'Reilly, Caroline L. O’Leary, Aislinn Reilly, Min Yuen Teo, Grainne O’Kane, Lizza Hendriks, Kathleen Bennett, Jarushka Naidoo\",\"doi\":\"10.3389/fonc.2024.1380453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) can be associated with significant toxicity. We performed a systematic review and meta-analysis of the toxicity of combination treatment of ICIs with TKIs (ICI + TKI) in clinical trials with solid organ malignancies. Our primary endpoint explored the incidence of grade 3 - 5 (G3-5) treatment-related toxicity and our secondary endpoints included the incidence of toxicity by treatment type, disease type and studies with run-in strategies. A total of 9750 abstracts were identified, of which 72 eligible studies were included. The most common disease types were non-small cell lung cancer (n=8, 11.1%), renal cell carcinoma (n=10, 13.8%) and hepatobiliary cancers (n=10, 13.8%). The overall incidence of G3-5 toxicity was 56% (95% CI = 50% – 61%). The most common TKIs combined with ICIs in this analysis were multi-targeted TKIs (n = 52, 72%), VEGF specific (n = 9, 12.5%), or oncogene-targeting TKIs (EGFR, ALK, BRAF, MEK) (n =11, 15.3%). Oncogene-targeted TKIs were associated a higher incidence of rashes and immune related adverse events (irAEs) and lower incidence of hypertension. In studies which used a TKI ‘run-in’ to mitigate toxicity, the pooled estimate of G3-5 toxicity was 71% (95% CI 57-81%). Almost half of studies (48%) omitted the incidence of G3-5 irAEs. Our work suggests that the majority of patients who receive ICI-TKI combinations will experience high grade toxicity (G3-G5) and that toxicity may be specific to TKI partner (Oncogene targeted TKIs: Rash, irAEs; VEGF/Multitargeted: Hypertension). These data did not suggest that a TKI ‘run-in’ was associated with a lower incidence of G3-5 toxicity. Reporting of irAEs was inconsistent supporting the need for harmonisation of adverse event reporting to include onset, duration and treatment.https://www.crd.york.ac.uk/prospero/, identifier CRD42022367416.\",\"PeriodicalId\":507440,\"journal\":{\"name\":\"Frontiers in Oncology\",\"volume\":\"5 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fonc.2024.1380453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fonc.2024.1380453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toxicity of immune checkpoint inhibitors and tyrosine kinase inhibitor combinations in solid tumours: a systematic review and meta-analysis
The combination of immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) can be associated with significant toxicity. We performed a systematic review and meta-analysis of the toxicity of combination treatment of ICIs with TKIs (ICI + TKI) in clinical trials with solid organ malignancies. Our primary endpoint explored the incidence of grade 3 - 5 (G3-5) treatment-related toxicity and our secondary endpoints included the incidence of toxicity by treatment type, disease type and studies with run-in strategies. A total of 9750 abstracts were identified, of which 72 eligible studies were included. The most common disease types were non-small cell lung cancer (n=8, 11.1%), renal cell carcinoma (n=10, 13.8%) and hepatobiliary cancers (n=10, 13.8%). The overall incidence of G3-5 toxicity was 56% (95% CI = 50% – 61%). The most common TKIs combined with ICIs in this analysis were multi-targeted TKIs (n = 52, 72%), VEGF specific (n = 9, 12.5%), or oncogene-targeting TKIs (EGFR, ALK, BRAF, MEK) (n =11, 15.3%). Oncogene-targeted TKIs were associated a higher incidence of rashes and immune related adverse events (irAEs) and lower incidence of hypertension. In studies which used a TKI ‘run-in’ to mitigate toxicity, the pooled estimate of G3-5 toxicity was 71% (95% CI 57-81%). Almost half of studies (48%) omitted the incidence of G3-5 irAEs. Our work suggests that the majority of patients who receive ICI-TKI combinations will experience high grade toxicity (G3-G5) and that toxicity may be specific to TKI partner (Oncogene targeted TKIs: Rash, irAEs; VEGF/Multitargeted: Hypertension). These data did not suggest that a TKI ‘run-in’ was associated with a lower incidence of G3-5 toxicity. Reporting of irAEs was inconsistent supporting the need for harmonisation of adverse event reporting to include onset, duration and treatment.https://www.crd.york.ac.uk/prospero/, identifier CRD42022367416.