产生 1.6 GeV 单粒子质子束

IF 1.5 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR
Kai Zhou, Yanliang Han, Zhiping Li, Hantao Jing, Yong‐Qin Yu
{"title":"产生 1.6 GeV 单粒子质子束","authors":"Kai Zhou, Yanliang Han, Zhiping Li, Hantao Jing, Yong‐Qin Yu","doi":"10.1103/physrevaccelbeams.27.070401","DOIUrl":null,"url":null,"abstract":"We present a scattering slow extraction method employing a rotating foil in the Rapid Cycling Synchrotron (RCS) to produce a stable 1.6 GeV single-particle proton beam at CSNS. The foil scatters particles on the beam’s edge over multiple turns, with those at large scattering angles being separated and extracted through a Lambertson magnet. By adjusting the scatter foil’s rotational speed and position, we can precisely control the intensity and repetition rate of the extracted beam. This approach enables the efficient extraction of extremely low-intensity proton beams from CSNS-II/RCS. By setting single-particle collimators in the downstream beamline, a single-particle proton beam is achieved. Using 4y, we simulated the scattering slow extraction process in detail, confirming that a stable 1.6 GeV single-particle proton beam can be extracted, the beam energy can be adjusted from 0.8 to 1.6 GeV using the degrader, the time interval between adjacent single protons can be adjusted from hundreds of nanoseconds to tens of microseconds, to meet the needs of different experiments. Both the beam loss and the residual radiation doses are kept at low levels.\n \n \n \n \n Published by the American Physical Society\n 2024\n \n \n","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of 1.6 GeV single-particle proton beams\",\"authors\":\"Kai Zhou, Yanliang Han, Zhiping Li, Hantao Jing, Yong‐Qin Yu\",\"doi\":\"10.1103/physrevaccelbeams.27.070401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a scattering slow extraction method employing a rotating foil in the Rapid Cycling Synchrotron (RCS) to produce a stable 1.6 GeV single-particle proton beam at CSNS. The foil scatters particles on the beam’s edge over multiple turns, with those at large scattering angles being separated and extracted through a Lambertson magnet. By adjusting the scatter foil’s rotational speed and position, we can precisely control the intensity and repetition rate of the extracted beam. This approach enables the efficient extraction of extremely low-intensity proton beams from CSNS-II/RCS. By setting single-particle collimators in the downstream beamline, a single-particle proton beam is achieved. Using 4y, we simulated the scattering slow extraction process in detail, confirming that a stable 1.6 GeV single-particle proton beam can be extracted, the beam energy can be adjusted from 0.8 to 1.6 GeV using the degrader, the time interval between adjacent single protons can be adjusted from hundreds of nanoseconds to tens of microseconds, to meet the needs of different experiments. Both the beam loss and the residual radiation doses are kept at low levels.\\n \\n \\n \\n \\n Published by the American Physical Society\\n 2024\\n \\n \\n\",\"PeriodicalId\":54297,\"journal\":{\"name\":\"Physical Review Accelerators and Beams\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Accelerators and Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevaccelbeams.27.070401\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.070401","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种散射慢萃取方法,利用快速循环同步加速器(RCS)中的旋转箔片,在 CSNS 产生稳定的 1.6 GeV 单粒子质子束。散射箔通过多圈转动对束流边缘的粒子进行散射,大散射角的粒子被分离出来,并通过兰伯逊磁铁提取出来。通过调整散射箔的旋转速度和位置,我们可以精确控制提取光束的强度和重复率。这种方法能够从 CSNS-II/RCS 中高效提取强度极低的质子束。通过在下游光束线设置单粒子准直器,实现了单粒子质子束。我们利用 4y 对散射慢提取过程进行了详细模拟,证实可以提取出稳定的 1.6 GeV 单粒子质子束,束流能量可通过消能器从 0.8 GeV 调整到 1.6 GeV,相邻单质子之间的时间间隔可从数百纳秒调整到数十微秒,以满足不同实验的需要。光束损耗和残余辐射剂量都保持在较低水平。 美国物理学会出版 2024
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generation of 1.6 GeV single-particle proton beams

Generation of 1.6 GeV single-particle proton beams
We present a scattering slow extraction method employing a rotating foil in the Rapid Cycling Synchrotron (RCS) to produce a stable 1.6 GeV single-particle proton beam at CSNS. The foil scatters particles on the beam’s edge over multiple turns, with those at large scattering angles being separated and extracted through a Lambertson magnet. By adjusting the scatter foil’s rotational speed and position, we can precisely control the intensity and repetition rate of the extracted beam. This approach enables the efficient extraction of extremely low-intensity proton beams from CSNS-II/RCS. By setting single-particle collimators in the downstream beamline, a single-particle proton beam is achieved. Using 4y, we simulated the scattering slow extraction process in detail, confirming that a stable 1.6 GeV single-particle proton beam can be extracted, the beam energy can be adjusted from 0.8 to 1.6 GeV using the degrader, the time interval between adjacent single protons can be adjusted from hundreds of nanoseconds to tens of microseconds, to meet the needs of different experiments. Both the beam loss and the residual radiation doses are kept at low levels. Published by the American Physical Society 2024
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Accelerators and Beams
Physical Review Accelerators and Beams Physics and Astronomy-Surfaces and Interfaces
CiteScore
3.90
自引率
23.50%
发文量
158
审稿时长
23 weeks
期刊介绍: Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信