利用图神经网络模型对生产供应链网络进行优化和效益评估

Q4 Computer Science
Ting Dong, M. Samonte
{"title":"利用图神经网络模型对生产供应链网络进行优化和效益评估","authors":"Ting Dong, M. Samonte","doi":"10.20532/cit.2024.1005804","DOIUrl":null,"url":null,"abstract":"With the flourishing development of global economy, effective management of production supply chains is crucial for the competitiveness of enterprises. Optimizing supply chain networks can not only improve the efficiency of resource allocation but also enhance market responsiveness and systemic risk resistance. Traditional supply chain network optimization methods, focusing mostly on linear models and static analysis, fall short in addressing the growing complexity and dynamism. The emergence of Graph Neural Network (GNN) models in recent years has offered new opportunities to tackle non-linearity and structural dynamism in supply chain networks. However, existing research still faces methodological limitations in supply chain node relationship mining and benefit assessment. This study introduces an optimization and benefit assessment method for production supply chain networks based on GNNs. Firstly, by developing a node role type-aware graph neural network model, this paper achieves in-depth mining and optimization of node relationships within production supply chain networks. Secondly, a hierarchical factor analysis method is used to comprehensively assess the benefits of the production supply chain. This method can dynamically capture changes in node roles and relationships within the supply chain network, optimize the network structure, and provides a multidimensional, multilevel framework for benefit assessment. This study not only expands the application of GNN in the field of supply chain management but also provides a new analytical tool for the comprehensive assessment of supply chain benefits.","PeriodicalId":38688,"journal":{"name":"Journal of Computing and Information Technology","volume":"14 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization and Benefit Assessment of Production Supply Chain Networks Using Graph Neural Network Models\",\"authors\":\"Ting Dong, M. Samonte\",\"doi\":\"10.20532/cit.2024.1005804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the flourishing development of global economy, effective management of production supply chains is crucial for the competitiveness of enterprises. Optimizing supply chain networks can not only improve the efficiency of resource allocation but also enhance market responsiveness and systemic risk resistance. Traditional supply chain network optimization methods, focusing mostly on linear models and static analysis, fall short in addressing the growing complexity and dynamism. The emergence of Graph Neural Network (GNN) models in recent years has offered new opportunities to tackle non-linearity and structural dynamism in supply chain networks. However, existing research still faces methodological limitations in supply chain node relationship mining and benefit assessment. This study introduces an optimization and benefit assessment method for production supply chain networks based on GNNs. Firstly, by developing a node role type-aware graph neural network model, this paper achieves in-depth mining and optimization of node relationships within production supply chain networks. Secondly, a hierarchical factor analysis method is used to comprehensively assess the benefits of the production supply chain. This method can dynamically capture changes in node roles and relationships within the supply chain network, optimize the network structure, and provides a multidimensional, multilevel framework for benefit assessment. This study not only expands the application of GNN in the field of supply chain management but also provides a new analytical tool for the comprehensive assessment of supply chain benefits.\",\"PeriodicalId\":38688,\"journal\":{\"name\":\"Journal of Computing and Information Technology\",\"volume\":\"14 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20532/cit.2024.1005804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20532/cit.2024.1005804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

随着全球经济的蓬勃发展,生产供应链的有效管理对企业的竞争力至关重要。优化供应链网络不仅能提高资源配置效率,还能增强市场响应能力和系统抗风险能力。传统的供应链网络优化方法大多侧重于线性模型和静态分析,无法应对日益增长的复杂性和动态性。近年来出现的图形神经网络(GNN)模型为解决供应链网络的非线性和结构动态性问题提供了新的机遇。然而,现有研究在供应链节点关系挖掘和效益评估方面仍面临方法上的局限。本研究介绍了一种基于 GNN 的生产供应链网络优化和效益评估方法。首先,本文通过建立节点角色类型感知图神经网络模型,实现了对生产供应链网络中节点关系的深度挖掘和优化。其次,采用层次因素分析方法全面评估生产供应链的效益。该方法能动态捕捉供应链网络内节点角色和关系的变化,优化网络结构,为效益评估提供了多维度、多层次的框架。这项研究不仅拓展了 GNN 在供应链管理领域的应用,也为供应链效益的综合评估提供了新的分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization and Benefit Assessment of Production Supply Chain Networks Using Graph Neural Network Models
With the flourishing development of global economy, effective management of production supply chains is crucial for the competitiveness of enterprises. Optimizing supply chain networks can not only improve the efficiency of resource allocation but also enhance market responsiveness and systemic risk resistance. Traditional supply chain network optimization methods, focusing mostly on linear models and static analysis, fall short in addressing the growing complexity and dynamism. The emergence of Graph Neural Network (GNN) models in recent years has offered new opportunities to tackle non-linearity and structural dynamism in supply chain networks. However, existing research still faces methodological limitations in supply chain node relationship mining and benefit assessment. This study introduces an optimization and benefit assessment method for production supply chain networks based on GNNs. Firstly, by developing a node role type-aware graph neural network model, this paper achieves in-depth mining and optimization of node relationships within production supply chain networks. Secondly, a hierarchical factor analysis method is used to comprehensively assess the benefits of the production supply chain. This method can dynamically capture changes in node roles and relationships within the supply chain network, optimize the network structure, and provides a multidimensional, multilevel framework for benefit assessment. This study not only expands the application of GNN in the field of supply chain management but also provides a new analytical tool for the comprehensive assessment of supply chain benefits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computing and Information Technology
Journal of Computing and Information Technology Computer Science-Computer Science (all)
CiteScore
0.60
自引率
0.00%
发文量
16
审稿时长
26 weeks
期刊介绍: CIT. Journal of Computing and Information Technology is an international peer-reviewed journal covering the area of computing and information technology, i.e. computer science, computer engineering, software engineering, information systems, and information technology. CIT endeavors to publish stimulating accounts of original scientific work, primarily including research papers on both theoretical and practical issues, as well as case studies describing the application and critical evaluation of theory. Surveys and state-of-the-art reports will be considered only exceptionally; proposals for such submissions should be sent to the Editorial Board for scrutiny. Specific areas of interest comprise, but are not restricted to, the following topics: theory of computing, design and analysis of algorithms, numerical and symbolic computing, scientific computing, artificial intelligence, image processing, pattern recognition, computer vision, embedded and real-time systems, operating systems, computer networking, Web technologies, distributed systems, human-computer interaction, technology enhanced learning, multimedia, database systems, data mining, machine learning, knowledge engineering, soft computing systems and network security, computational statistics, computational linguistics, and natural language processing. Special attention is paid to educational, social, legal and managerial aspects of computing and information technology. In this respect CIT fosters the exchange of ideas, experience and knowledge between regions with different technological and cultural background, and in particular developed and developing ones.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信