用场回路耦合法计算无电绝缘 HTS 磁体的交流损耗

Ruichen Wang, Guangtong Ma, Pengbo Zhou, Songlin Li, Boqiang Liu, Weikang Tian
{"title":"用场回路耦合法计算无电绝缘 HTS 磁体的交流损耗","authors":"Ruichen Wang, Guangtong Ma, Pengbo Zhou, Songlin Li, Boqiang Liu, Weikang Tian","doi":"10.1088/1361-6668/ad637c","DOIUrl":null,"url":null,"abstract":"\n No-electrical-insulation (NEI) magnets gradually exhibit significant appeal due to their robust thermal stability and elevated mechanical strength. However, when exposed to AC conditions, the magnets would suffer more significant AC losses in dynamic electromagnetic devices, such as motors and maglev systems. Presently, the numerical methods for predicting the electromagnetic and loss behaviors of large-scale NEI magnets entail high computation costs due to the substantial degrees of freedom or complicated modeling strategies. Thus, we propose a fully finite-element method referred to the field-circuit coupling method to efficiently assess the overall behaviors of NEI magnets while preserving adequate accuracy. This method couples the T-A formula and the single-turn equivalent circuit through global voltage, to avoid the costly and complicated inductance calculation, and to simultaneously consider the induced current. By further integrating the homogenization method, the calculation speed can be increased up to ten times. Additionally, we study the critical current, electromagnetic and loss behaviors of the NEI magnets based on the proposed model. We identify some measurement methods that offer more precise estimations of the critical current and the turn-to-turn contact resistance of NEI magnets. Meanwhile, the results indicate the severe impact of high AC fields on the losses, and emphasize the importance of a reliable shielding structure for operational safety. Finally, the influence of turn-to-turn contact resistivity on the loss behavior is also investigated, which can provide valuable insights for the design of the NEI magnets in dynamic electromagnetic devices.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AC losses calculation of No-electrical-insulation HTS magnets with field-circuit coupling method\",\"authors\":\"Ruichen Wang, Guangtong Ma, Pengbo Zhou, Songlin Li, Boqiang Liu, Weikang Tian\",\"doi\":\"10.1088/1361-6668/ad637c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n No-electrical-insulation (NEI) magnets gradually exhibit significant appeal due to their robust thermal stability and elevated mechanical strength. However, when exposed to AC conditions, the magnets would suffer more significant AC losses in dynamic electromagnetic devices, such as motors and maglev systems. Presently, the numerical methods for predicting the electromagnetic and loss behaviors of large-scale NEI magnets entail high computation costs due to the substantial degrees of freedom or complicated modeling strategies. Thus, we propose a fully finite-element method referred to the field-circuit coupling method to efficiently assess the overall behaviors of NEI magnets while preserving adequate accuracy. This method couples the T-A formula and the single-turn equivalent circuit through global voltage, to avoid the costly and complicated inductance calculation, and to simultaneously consider the induced current. By further integrating the homogenization method, the calculation speed can be increased up to ten times. Additionally, we study the critical current, electromagnetic and loss behaviors of the NEI magnets based on the proposed model. We identify some measurement methods that offer more precise estimations of the critical current and the turn-to-turn contact resistance of NEI magnets. Meanwhile, the results indicate the severe impact of high AC fields on the losses, and emphasize the importance of a reliable shielding structure for operational safety. Finally, the influence of turn-to-turn contact resistivity on the loss behavior is also investigated, which can provide valuable insights for the design of the NEI magnets in dynamic electromagnetic devices.\",\"PeriodicalId\":21985,\"journal\":{\"name\":\"Superconductor Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductor Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6668/ad637c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad637c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无电绝缘(NEI)磁体因其强大的热稳定性和较高的机械强度而逐渐显示出巨大的吸引力。然而,当暴露在交流条件下时,磁体在动态电磁设备(如电机和磁悬浮系统)中将遭受更显著的交流损耗。目前,预测大规模 NEI 磁体的电磁和损耗行为的数值方法由于自由度大或建模策略复杂而需要高昂的计算成本。因此,我们提出了一种称为场-回路耦合法的全有限元方法,以在保持足够精度的前提下有效评估 NEI 磁体的整体行为。该方法通过全局电压耦合 T-A 公式和单匝等效电路,避免了昂贵而复杂的电感计算,并同时考虑了感应电流。通过进一步整合均质化方法,计算速度可提高 10 倍。此外,我们还根据提出的模型研究了 NEI 磁体的临界电流、电磁和损耗行为。我们确定了一些测量方法,可以更精确地估算 NEI 磁体的临界电流和匝间接触电阻。同时,研究结果表明了高交流场对损耗的严重影响,并强调了可靠的屏蔽结构对运行安全的重要性。最后,还研究了匝间接触电阻率对损耗行为的影响,这为动态电磁设备中 NEI 磁体的设计提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AC losses calculation of No-electrical-insulation HTS magnets with field-circuit coupling method
No-electrical-insulation (NEI) magnets gradually exhibit significant appeal due to their robust thermal stability and elevated mechanical strength. However, when exposed to AC conditions, the magnets would suffer more significant AC losses in dynamic electromagnetic devices, such as motors and maglev systems. Presently, the numerical methods for predicting the electromagnetic and loss behaviors of large-scale NEI magnets entail high computation costs due to the substantial degrees of freedom or complicated modeling strategies. Thus, we propose a fully finite-element method referred to the field-circuit coupling method to efficiently assess the overall behaviors of NEI magnets while preserving adequate accuracy. This method couples the T-A formula and the single-turn equivalent circuit through global voltage, to avoid the costly and complicated inductance calculation, and to simultaneously consider the induced current. By further integrating the homogenization method, the calculation speed can be increased up to ten times. Additionally, we study the critical current, electromagnetic and loss behaviors of the NEI magnets based on the proposed model. We identify some measurement methods that offer more precise estimations of the critical current and the turn-to-turn contact resistance of NEI magnets. Meanwhile, the results indicate the severe impact of high AC fields on the losses, and emphasize the importance of a reliable shielding structure for operational safety. Finally, the influence of turn-to-turn contact resistivity on the loss behavior is also investigated, which can provide valuable insights for the design of the NEI magnets in dynamic electromagnetic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信