具有杀伤力的一维扩散过程的强准混合特性

Saixia Liao, Hanjun Zhang, Huasheng Li
{"title":"具有杀伤力的一维扩散过程的强准混合特性","authors":"Saixia Liao, Hanjun Zhang, Huasheng Li","doi":"10.1088/1751-8121/ad637f","DOIUrl":null,"url":null,"abstract":"\n In this paper, we establish sufficient conditions for the existence of strongly (uniformly and exponentially) quasi-mixing limits of one-dimensional diffusion processes with killing. As a by-product, these conditions also ensure that the considered processes have strong quasi-ergodicity, strong fractional quasi-ergodicity and uniform mean-ratio quasi-ergodicity. Moreover, the quasi-ergodic speeds of these three quasi-ergodicities are also characterized.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"42 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly quasi-mixing properties for one-dimensional diffusion processes with killing\",\"authors\":\"Saixia Liao, Hanjun Zhang, Huasheng Li\",\"doi\":\"10.1088/1751-8121/ad637f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we establish sufficient conditions for the existence of strongly (uniformly and exponentially) quasi-mixing limits of one-dimensional diffusion processes with killing. As a by-product, these conditions also ensure that the considered processes have strong quasi-ergodicity, strong fractional quasi-ergodicity and uniform mean-ratio quasi-ergodicity. Moreover, the quasi-ergodic speeds of these three quasi-ergodicities are also characterized.\",\"PeriodicalId\":502730,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"42 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad637f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad637f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了一维扩散过程强(均匀和指数)准混合极限存在的充分条件。作为副产品,这些条件还确保了所考虑的过程具有强准啮合性、强分数准啮合性和均匀均比准啮合性。此外,这三种准极性的准极速也得到了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strongly quasi-mixing properties for one-dimensional diffusion processes with killing
In this paper, we establish sufficient conditions for the existence of strongly (uniformly and exponentially) quasi-mixing limits of one-dimensional diffusion processes with killing. As a by-product, these conditions also ensure that the considered processes have strong quasi-ergodicity, strong fractional quasi-ergodicity and uniform mean-ratio quasi-ergodicity. Moreover, the quasi-ergodic speeds of these three quasi-ergodicities are also characterized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信