{"title":"开发用于脉冲模式热水加热电路的液压阻尼装置原型","authors":"Yang Chen, A. Lysyakov, Jiaying Xu","doi":"10.33619/2414-2948/104/35","DOIUrl":null,"url":null,"abstract":"This paper provides a comprehensive exploration into the design and implementation of the hydraulic damping device within a pulse mode hot water heating loop. It outlines a systematic approach aimed at optimizing system performance, detailing the operational principles of the pulse mode heating circuit and presenting a structured construction scheme for the hydraulic damping apparatus. Accompanying this analysis is a simplified diagram illustrating the hydraulic damping system, offering a clear visual representation of its integration within the heating circuit. Through mathematical transformations, essential parameters such as complex impedance, frequency function, and vibration frequency characteristics are derived, providing valuable insights into the dynamic behavior of the system. Culminating this investigation, the paper constructs the frequency response of the circuit, offering a comprehensive understanding of its dynamic behavior across varying frequencies. This synthesis of theoretical frameworks and practical applications advances our understanding of pulse mode hot water heating technology, paving the way for enhanced efficiency and performance in heating systems.","PeriodicalId":505704,"journal":{"name":"Bulletin of Science and Practice","volume":"48 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Prototype Hydraulic Damping Device for Hot Water Heating Circuit in Pulse Mode\",\"authors\":\"Yang Chen, A. Lysyakov, Jiaying Xu\",\"doi\":\"10.33619/2414-2948/104/35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a comprehensive exploration into the design and implementation of the hydraulic damping device within a pulse mode hot water heating loop. It outlines a systematic approach aimed at optimizing system performance, detailing the operational principles of the pulse mode heating circuit and presenting a structured construction scheme for the hydraulic damping apparatus. Accompanying this analysis is a simplified diagram illustrating the hydraulic damping system, offering a clear visual representation of its integration within the heating circuit. Through mathematical transformations, essential parameters such as complex impedance, frequency function, and vibration frequency characteristics are derived, providing valuable insights into the dynamic behavior of the system. Culminating this investigation, the paper constructs the frequency response of the circuit, offering a comprehensive understanding of its dynamic behavior across varying frequencies. This synthesis of theoretical frameworks and practical applications advances our understanding of pulse mode hot water heating technology, paving the way for enhanced efficiency and performance in heating systems.\",\"PeriodicalId\":505704,\"journal\":{\"name\":\"Bulletin of Science and Practice\",\"volume\":\"48 25\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Science and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33619/2414-2948/104/35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Science and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33619/2414-2948/104/35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a Prototype Hydraulic Damping Device for Hot Water Heating Circuit in Pulse Mode
This paper provides a comprehensive exploration into the design and implementation of the hydraulic damping device within a pulse mode hot water heating loop. It outlines a systematic approach aimed at optimizing system performance, detailing the operational principles of the pulse mode heating circuit and presenting a structured construction scheme for the hydraulic damping apparatus. Accompanying this analysis is a simplified diagram illustrating the hydraulic damping system, offering a clear visual representation of its integration within the heating circuit. Through mathematical transformations, essential parameters such as complex impedance, frequency function, and vibration frequency characteristics are derived, providing valuable insights into the dynamic behavior of the system. Culminating this investigation, the paper constructs the frequency response of the circuit, offering a comprehensive understanding of its dynamic behavior across varying frequencies. This synthesis of theoretical frameworks and practical applications advances our understanding of pulse mode hot water heating technology, paving the way for enhanced efficiency and performance in heating systems.