正则化断裂传播模型优化控制问题的 SQP 方法的局部二次收敛性

Ira Neitzel, Andreas Hehl
{"title":"正则化断裂传播模型优化控制问题的 SQP 方法的局部二次收敛性","authors":"Ira Neitzel, Andreas Hehl","doi":"10.1051/cocv/2024052","DOIUrl":null,"url":null,"abstract":"We prove local quadratic convergence of the sequential quadratic programming (SQP) method for an optimal control problem of tracking type governed by one time step of the Euler-Lagrange equation of a time discrete regularized fracture or damage energy minimization problem. This lower-level energy minimization problem % describing the fracture process\n    contains a penalization term for violation of the irreversibility condition in the fracture growth process and a viscous regularization term. Conditions on the latter, corresponding to a time step restriction, guarantee strict convexity and thus unique solvability of the Euler Lagrange equations. Nonetheless, these are quasilinear and the control problem is nonconvex. For the convergence proof with $L^\\infty$ localization of the SQP-method, we follow the approach from \\cite{Troeltzsch:1999}, utilizing strong regularity of generalized equations and arguments from \\cite{HoppeNeitzel:2020} for $L^2$-localization.\n\n2020 Mathematics Subject Classification\n\n90C55, 49M41, 49M15.","PeriodicalId":512605,"journal":{"name":"ESAIM: Control, Optimisation and Calculus of Variations","volume":"10 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local quadratic convergence of the SQP method for an optimal control problem governed by a regularized fracture propagation model\",\"authors\":\"Ira Neitzel, Andreas Hehl\",\"doi\":\"10.1051/cocv/2024052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove local quadratic convergence of the sequential quadratic programming (SQP) method for an optimal control problem of tracking type governed by one time step of the Euler-Lagrange equation of a time discrete regularized fracture or damage energy minimization problem. This lower-level energy minimization problem % describing the fracture process\\n    contains a penalization term for violation of the irreversibility condition in the fracture growth process and a viscous regularization term. Conditions on the latter, corresponding to a time step restriction, guarantee strict convexity and thus unique solvability of the Euler Lagrange equations. Nonetheless, these are quasilinear and the control problem is nonconvex. For the convergence proof with $L^\\\\infty$ localization of the SQP-method, we follow the approach from \\\\cite{Troeltzsch:1999}, utilizing strong regularity of generalized equations and arguments from \\\\cite{HoppeNeitzel:2020} for $L^2$-localization.\\n\\n2020 Mathematics Subject Classification\\n\\n90C55, 49M41, 49M15.\",\"PeriodicalId\":512605,\"journal\":{\"name\":\"ESAIM: Control, Optimisation and Calculus of Variations\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM: Control, Optimisation and Calculus of Variations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/cocv/2024052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Control, Optimisation and Calculus of Variations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/cocv/2024052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了对于由时间离散正则化断裂或损伤能量最小化问题的欧拉-拉格朗日方程的一个时间步控制的跟踪型最优控制问题的连续二次编程(SQP)方法的局部二次收敛性。这个描述断裂过程的低级能量最小化问题 % 包含对断裂生长过程中违反不可逆条件的惩罚项和粘性正则化项。后者的条件与时间步长限制相对应,保证了严格的凸性,从而保证了欧拉-拉格朗日方程的唯一可解性。然而,这些都是准线性方程,控制问题是非凸的。对于 SQP 方法的 $L^infty$ 本地化的收敛性证明,我们沿用了 \cite{Troeltzsch:1999} 的方法,利用了广义方程的强正则性以及 \cite{HoppeNeitzel:2020} 对于 $L^2$ 本地化的论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local quadratic convergence of the SQP method for an optimal control problem governed by a regularized fracture propagation model
We prove local quadratic convergence of the sequential quadratic programming (SQP) method for an optimal control problem of tracking type governed by one time step of the Euler-Lagrange equation of a time discrete regularized fracture or damage energy minimization problem. This lower-level energy minimization problem % describing the fracture process     contains a penalization term for violation of the irreversibility condition in the fracture growth process and a viscous regularization term. Conditions on the latter, corresponding to a time step restriction, guarantee strict convexity and thus unique solvability of the Euler Lagrange equations. Nonetheless, these are quasilinear and the control problem is nonconvex. For the convergence proof with $L^\infty$ localization of the SQP-method, we follow the approach from \cite{Troeltzsch:1999}, utilizing strong regularity of generalized equations and arguments from \cite{HoppeNeitzel:2020} for $L^2$-localization. 2020 Mathematics Subject Classification 90C55, 49M41, 49M15.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信