Shubham Goswami, Chirag Rajendra Ternikar, Rajsekhar Kandala, Netra S. Pillai, Vivek Kumar Yadav, Abhishek, Jisha Joseph, Subimal Ghosh, B. Vishwakarma
{"title":"基于水预算的蒸散量产品可捕捉自然和人为因素造成的变化","authors":"Shubham Goswami, Chirag Rajendra Ternikar, Rajsekhar Kandala, Netra S. Pillai, Vivek Kumar Yadav, Abhishek, Jisha Joseph, Subimal Ghosh, B. Vishwakarma","doi":"10.1088/1748-9326/ad63bd","DOIUrl":null,"url":null,"abstract":"\n Evapotranspiration (ET) is one of the most important yet highly uncertain components of the water cycle. Available modelled ET products do not necessarily agree with each other at various spatiotemporal scales, either due to limitations on input data and/or due to model assumptions and simplifications. Therefore, using water budget equation to estimate ET has gained attention. However, a large number of water-budget combinations with large uncertainties are available that increases ambiguity in choosing the best ET estimate. Here, the Kalman filter is employed for ingesting 96 water-budget based ET estimates and produce a global ET product with uncertainty < 2 mm, and it captures the general spatiotemporal pattern of ET and the inter-annual variability over all continents. Since the water budget includes storage change due to human interventions, our ET estimates are superior over regions with strong irrigation signal, such as the Ganges basin. We verify our claim by using a modified variable infiltration capacity model that simulates irrigation activities as well. Our ET estimates have a global mean positive trend of 0.18 ± 0.02 mm/year with larger regional variations that are discussed.","PeriodicalId":507917,"journal":{"name":"Environmental Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water-budget based Evapotranspiration product captures natural and human-caused variability\",\"authors\":\"Shubham Goswami, Chirag Rajendra Ternikar, Rajsekhar Kandala, Netra S. Pillai, Vivek Kumar Yadav, Abhishek, Jisha Joseph, Subimal Ghosh, B. Vishwakarma\",\"doi\":\"10.1088/1748-9326/ad63bd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Evapotranspiration (ET) is one of the most important yet highly uncertain components of the water cycle. Available modelled ET products do not necessarily agree with each other at various spatiotemporal scales, either due to limitations on input data and/or due to model assumptions and simplifications. Therefore, using water budget equation to estimate ET has gained attention. However, a large number of water-budget combinations with large uncertainties are available that increases ambiguity in choosing the best ET estimate. Here, the Kalman filter is employed for ingesting 96 water-budget based ET estimates and produce a global ET product with uncertainty < 2 mm, and it captures the general spatiotemporal pattern of ET and the inter-annual variability over all continents. Since the water budget includes storage change due to human interventions, our ET estimates are superior over regions with strong irrigation signal, such as the Ganges basin. We verify our claim by using a modified variable infiltration capacity model that simulates irrigation activities as well. Our ET estimates have a global mean positive trend of 0.18 ± 0.02 mm/year with larger regional variations that are discussed.\",\"PeriodicalId\":507917,\"journal\":{\"name\":\"Environmental Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-9326/ad63bd\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad63bd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Water-budget based Evapotranspiration product captures natural and human-caused variability
Evapotranspiration (ET) is one of the most important yet highly uncertain components of the water cycle. Available modelled ET products do not necessarily agree with each other at various spatiotemporal scales, either due to limitations on input data and/or due to model assumptions and simplifications. Therefore, using water budget equation to estimate ET has gained attention. However, a large number of water-budget combinations with large uncertainties are available that increases ambiguity in choosing the best ET estimate. Here, the Kalman filter is employed for ingesting 96 water-budget based ET estimates and produce a global ET product with uncertainty < 2 mm, and it captures the general spatiotemporal pattern of ET and the inter-annual variability over all continents. Since the water budget includes storage change due to human interventions, our ET estimates are superior over regions with strong irrigation signal, such as the Ganges basin. We verify our claim by using a modified variable infiltration capacity model that simulates irrigation activities as well. Our ET estimates have a global mean positive trend of 0.18 ± 0.02 mm/year with larger regional variations that are discussed.