Wei Li, Liyuan Yu, Tao Zhang, Haijian Su, Xianzhen Mi, Doudou Fan, Bao Jin
{"title":"基于多级力链网络的晶粒尺寸对花岗岩拉伸力学行为影响的定量分析","authors":"Wei Li, Liyuan Yu, Tao Zhang, Haijian Su, Xianzhen Mi, Doudou Fan, Bao Jin","doi":"10.1007/s40571-024-00790-3","DOIUrl":null,"url":null,"abstract":"<div><p>A three-dimensional grain-based model based on the discrete element method is proposed for reconstructing the filling and grouping of minerals in granite, then a batch of numerical disc specimens with different grain sizes <i>R</i><sub>G</sub> are subjected to the Brazilian splitting test. In addition, the force chain networks in the numerical samples are subjected to multi-level classification and quantitative analysis, and the grain size effect on the tensile mechanical behavior of granite is discussed from the perspective of force chain networks. The results show that the mechanical properties and micro-cracking behavior of fine- and coarse-grained samples obtained experimentally and from simulation are consistent, including the load–displacement curve, the peak load, the failure displacement, and the proportion of intergranular/transgranular cracks. Therefore, the reliability of the model is verified. As <i>R</i><sub>G</sub> increases, the number of intragranular contacts increases, while the number of intergranular contacts decreases. The bearing capacity and deformation resistance of the samples increase. As <i>R</i><sub>G</sub> increases, both the number and sum of force chains for intragranular structures increase gradually, while these two parameters for intergranular structures decrease; meanwhile, the average values for intragranular and intergranular structures increase with increasing <i>R</i><sub>G</sub>. As <i>R</i><sub>G</sub> continues to increase, the number of contacts within mineral grains capable of withstanding external loads increases, forming a robust force chain network to bear external loads. It becomes challenging for a low-level load to break the contacts within the mineral, leading to an increase in the sample’s load-bearing capacity.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 5","pages":"2245 - 2266"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative analysis of grain size effect on tensile mechanical behavior of granite based on multi-level force chain networks\",\"authors\":\"Wei Li, Liyuan Yu, Tao Zhang, Haijian Su, Xianzhen Mi, Doudou Fan, Bao Jin\",\"doi\":\"10.1007/s40571-024-00790-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A three-dimensional grain-based model based on the discrete element method is proposed for reconstructing the filling and grouping of minerals in granite, then a batch of numerical disc specimens with different grain sizes <i>R</i><sub>G</sub> are subjected to the Brazilian splitting test. In addition, the force chain networks in the numerical samples are subjected to multi-level classification and quantitative analysis, and the grain size effect on the tensile mechanical behavior of granite is discussed from the perspective of force chain networks. The results show that the mechanical properties and micro-cracking behavior of fine- and coarse-grained samples obtained experimentally and from simulation are consistent, including the load–displacement curve, the peak load, the failure displacement, and the proportion of intergranular/transgranular cracks. Therefore, the reliability of the model is verified. As <i>R</i><sub>G</sub> increases, the number of intragranular contacts increases, while the number of intergranular contacts decreases. The bearing capacity and deformation resistance of the samples increase. As <i>R</i><sub>G</sub> increases, both the number and sum of force chains for intragranular structures increase gradually, while these two parameters for intergranular structures decrease; meanwhile, the average values for intragranular and intergranular structures increase with increasing <i>R</i><sub>G</sub>. As <i>R</i><sub>G</sub> continues to increase, the number of contacts within mineral grains capable of withstanding external loads increases, forming a robust force chain network to bear external loads. It becomes challenging for a low-level load to break the contacts within the mineral, leading to an increase in the sample’s load-bearing capacity.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"11 5\",\"pages\":\"2245 - 2266\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-024-00790-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-024-00790-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Quantitative analysis of grain size effect on tensile mechanical behavior of granite based on multi-level force chain networks
A three-dimensional grain-based model based on the discrete element method is proposed for reconstructing the filling and grouping of minerals in granite, then a batch of numerical disc specimens with different grain sizes RG are subjected to the Brazilian splitting test. In addition, the force chain networks in the numerical samples are subjected to multi-level classification and quantitative analysis, and the grain size effect on the tensile mechanical behavior of granite is discussed from the perspective of force chain networks. The results show that the mechanical properties and micro-cracking behavior of fine- and coarse-grained samples obtained experimentally and from simulation are consistent, including the load–displacement curve, the peak load, the failure displacement, and the proportion of intergranular/transgranular cracks. Therefore, the reliability of the model is verified. As RG increases, the number of intragranular contacts increases, while the number of intergranular contacts decreases. The bearing capacity and deformation resistance of the samples increase. As RG increases, both the number and sum of force chains for intragranular structures increase gradually, while these two parameters for intergranular structures decrease; meanwhile, the average values for intragranular and intergranular structures increase with increasing RG. As RG continues to increase, the number of contacts within mineral grains capable of withstanding external loads increases, forming a robust force chain network to bear external loads. It becomes challenging for a low-level load to break the contacts within the mineral, leading to an increase in the sample’s load-bearing capacity.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.