{"title":"根据 Resource-1 02D 高光谱图像数据识别主要树种","authors":"Jingchun Zhou, Zhanyong Feng, Yiping Li, Jinliang Wang, Xiangrui Meng, Yuan Liu, Shaobo Qiu","doi":"10.3389/feart.2024.1418865","DOIUrl":null,"url":null,"abstract":"Fine-grained classification of tree species by using high-spectral image data has garnered considerable attention from scholars. In this study, through field measurements from Maguan County, Wenshan Prefecture, Yunnan Province, China, high-spectral image data from the Chinese Resource-1 02D satellite were used as the data source. Various analyses were conducted on the original image’s spectral curve, the spectral curve after envelope removal, the spectral curve after first-order differential transformation, and the spectral curve after second-order differential transformation. A spectral angle mapping classification method was employed to classify and identify four dominant tree species in Maguan County, and the accuracy of the classification results was validated using a confusion matrix. Results indicate that the highest accuracy in tree species classification was achieved when first-order differential transformation and envelope removal were used for the spectral curve; the overall accuracy exceeded 95%, and the kappa value was approximately 0.95. The classification results for the spectral curve after second-order differential transformation were the lowest, with an overall accuracy of 81.69% and a kappa value of 0.76. This research demonstrates that applying first-order differential transformation or envelope removal in combination with spectral angle mapping classification considerably reduces data processing time and improves tree species classification accuracy.","PeriodicalId":505744,"journal":{"name":"Frontiers in Earth Science","volume":"5 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of dominant tree species based on Resource-1 02D hyperspectral image data\",\"authors\":\"Jingchun Zhou, Zhanyong Feng, Yiping Li, Jinliang Wang, Xiangrui Meng, Yuan Liu, Shaobo Qiu\",\"doi\":\"10.3389/feart.2024.1418865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fine-grained classification of tree species by using high-spectral image data has garnered considerable attention from scholars. In this study, through field measurements from Maguan County, Wenshan Prefecture, Yunnan Province, China, high-spectral image data from the Chinese Resource-1 02D satellite were used as the data source. Various analyses were conducted on the original image’s spectral curve, the spectral curve after envelope removal, the spectral curve after first-order differential transformation, and the spectral curve after second-order differential transformation. A spectral angle mapping classification method was employed to classify and identify four dominant tree species in Maguan County, and the accuracy of the classification results was validated using a confusion matrix. Results indicate that the highest accuracy in tree species classification was achieved when first-order differential transformation and envelope removal were used for the spectral curve; the overall accuracy exceeded 95%, and the kappa value was approximately 0.95. The classification results for the spectral curve after second-order differential transformation were the lowest, with an overall accuracy of 81.69% and a kappa value of 0.76. This research demonstrates that applying first-order differential transformation or envelope removal in combination with spectral angle mapping classification considerably reduces data processing time and improves tree species classification accuracy.\",\"PeriodicalId\":505744,\"journal\":{\"name\":\"Frontiers in Earth Science\",\"volume\":\"5 45\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Earth Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/feart.2024.1418865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/feart.2024.1418865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of dominant tree species based on Resource-1 02D hyperspectral image data
Fine-grained classification of tree species by using high-spectral image data has garnered considerable attention from scholars. In this study, through field measurements from Maguan County, Wenshan Prefecture, Yunnan Province, China, high-spectral image data from the Chinese Resource-1 02D satellite were used as the data source. Various analyses were conducted on the original image’s spectral curve, the spectral curve after envelope removal, the spectral curve after first-order differential transformation, and the spectral curve after second-order differential transformation. A spectral angle mapping classification method was employed to classify and identify four dominant tree species in Maguan County, and the accuracy of the classification results was validated using a confusion matrix. Results indicate that the highest accuracy in tree species classification was achieved when first-order differential transformation and envelope removal were used for the spectral curve; the overall accuracy exceeded 95%, and the kappa value was approximately 0.95. The classification results for the spectral curve after second-order differential transformation were the lowest, with an overall accuracy of 81.69% and a kappa value of 0.76. This research demonstrates that applying first-order differential transformation or envelope removal in combination with spectral angle mapping classification considerably reduces data processing time and improves tree species classification accuracy.