用于整个生命树功能评估的多样化基因组嵌入基准

bioRxiv Pub Date : 2024-07-16 DOI:10.1101/2024.07.10.602933
Jacob West-Roberts, Joshua Kravitz, Nishant Jha, Andre L. Cornman, Yunha Hwang
{"title":"用于整个生命树功能评估的多样化基因组嵌入基准","authors":"Jacob West-Roberts, Joshua Kravitz, Nishant Jha, Andre L. Cornman, Yunha Hwang","doi":"10.1101/2024.07.10.602933","DOIUrl":null,"url":null,"abstract":"Biological foundation models hold significant promise for deciphering complex biological functions. However, evaluating their performance on functional tasks remains challenging due to the lack of standardized benchmarks encompassing diverse sequences and functions. Existing functional annotations are often scarce, biased, and susceptible to train-test leakage, hindering robust evaluation. Furthermore, biological functions manifest at multiple scales, from individual residues to large genomic segments. To address these limitations, we introduce the Diverse Genomic Embedding Benchmark (DGEB), inspired by natural language embedding benchmarks. DGEB comprises six embedding tasks across 18 expert curated datasets, spanning sequences from all domains of life and encompassing both nucleic acid and amino acid modalities. Notably, four datasets enable direct comparison between models trained on different modalities. Benchmarking protein and genomic language models (pLMs and gLMs) on DGEB reveals performance saturation with model scaling on numerous tasks, especially on those with underrepresented sequences (e.g. Archaea). This highlights the limitations of existing modeling objectives and training data distributions for capturing diverse biological functions. DGEB is available as an open-source package with a public leaderboard at https://github.com/TattaBio/DGEB.","PeriodicalId":9124,"journal":{"name":"bioRxiv","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diverse Genomic Embedding Benchmark for functional evaluation across the tree of life\",\"authors\":\"Jacob West-Roberts, Joshua Kravitz, Nishant Jha, Andre L. Cornman, Yunha Hwang\",\"doi\":\"10.1101/2024.07.10.602933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological foundation models hold significant promise for deciphering complex biological functions. However, evaluating their performance on functional tasks remains challenging due to the lack of standardized benchmarks encompassing diverse sequences and functions. Existing functional annotations are often scarce, biased, and susceptible to train-test leakage, hindering robust evaluation. Furthermore, biological functions manifest at multiple scales, from individual residues to large genomic segments. To address these limitations, we introduce the Diverse Genomic Embedding Benchmark (DGEB), inspired by natural language embedding benchmarks. DGEB comprises six embedding tasks across 18 expert curated datasets, spanning sequences from all domains of life and encompassing both nucleic acid and amino acid modalities. Notably, four datasets enable direct comparison between models trained on different modalities. Benchmarking protein and genomic language models (pLMs and gLMs) on DGEB reveals performance saturation with model scaling on numerous tasks, especially on those with underrepresented sequences (e.g. Archaea). This highlights the limitations of existing modeling objectives and training data distributions for capturing diverse biological functions. DGEB is available as an open-source package with a public leaderboard at https://github.com/TattaBio/DGEB.\",\"PeriodicalId\":9124,\"journal\":{\"name\":\"bioRxiv\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.10.602933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.10.602933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物基础模型在破译复杂的生物功能方面大有可为。然而,由于缺乏涵盖不同序列和功能的标准化基准,评估它们在功能任务上的性能仍然具有挑战性。现有的功能注释往往稀缺、有偏差,而且容易出现训练-测试泄漏,从而阻碍了稳健的评估。此外,生物功能体现在多个尺度上,从单个残基到大型基因组片段。为了解决这些局限性,我们受自然语言嵌入基准的启发,推出了多样化基因组嵌入基准(Diverse Genomic Embedding Benchmark,DGEB)。DGEB 包括六项嵌入任务,涉及 18 个专家策划的数据集,涵盖生命所有领域的序列,包括核酸和氨基酸模式。值得注意的是,有四个数据集可以直接比较在不同模式下训练的模型。在 DGEB 上对蛋白质和基因组语言模型(pLMs 和 gLMs)进行基准测试,发现在许多任务上,特别是在那些序列代表性不足的任务上(如古生菌),随着模型的扩展,性能达到饱和。这凸显了现有建模目标和训练数据分布在捕捉各种生物功能方面的局限性。DGEB 是一个开源软件包,在 https://github.com/TattaBio/DGEB 网站上有一个公共排行榜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diverse Genomic Embedding Benchmark for functional evaluation across the tree of life
Biological foundation models hold significant promise for deciphering complex biological functions. However, evaluating their performance on functional tasks remains challenging due to the lack of standardized benchmarks encompassing diverse sequences and functions. Existing functional annotations are often scarce, biased, and susceptible to train-test leakage, hindering robust evaluation. Furthermore, biological functions manifest at multiple scales, from individual residues to large genomic segments. To address these limitations, we introduce the Diverse Genomic Embedding Benchmark (DGEB), inspired by natural language embedding benchmarks. DGEB comprises six embedding tasks across 18 expert curated datasets, spanning sequences from all domains of life and encompassing both nucleic acid and amino acid modalities. Notably, four datasets enable direct comparison between models trained on different modalities. Benchmarking protein and genomic language models (pLMs and gLMs) on DGEB reveals performance saturation with model scaling on numerous tasks, especially on those with underrepresented sequences (e.g. Archaea). This highlights the limitations of existing modeling objectives and training data distributions for capturing diverse biological functions. DGEB is available as an open-source package with a public leaderboard at https://github.com/TattaBio/DGEB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信