Hua Yang, Youwen Sun, M. Jia, A. Loarte, P. Xie, Q. Ma, Xuemin Wu, Cheng Ye, Yueqiang Liu, Jiale Chen, Ruirong Liang, Zhendong Yang, Gaoting Chen, Bin Zhang, Qing Zang, Kaixuan Ye
{"title":"通过 EAST 中 q95 的微小变化动态控制 n = 4 RMP ELM 抑制期间的分流器热通量","authors":"Hua Yang, Youwen Sun, M. Jia, A. Loarte, P. Xie, Q. Ma, Xuemin Wu, Cheng Ye, Yueqiang Liu, Jiale Chen, Ruirong Liang, Zhendong Yang, Gaoting Chen, Bin Zhang, Qing Zang, Kaixuan Ye","doi":"10.1088/1741-4326/ad63b8","DOIUrl":null,"url":null,"abstract":"\n The experiment in EAST demonstrates effective modulation of the stationary heat flux to the secondary lobes of the magnetic footprint induced by the resonant magnetic perturbations (RMPs) by slightly varying the equilibrium q95, consistent with prior numerical modeling. During the small q95 variation, the edge localized mode (ELM) control is well maintained, and the position of the secondary heat flux peak is effectively shifted, thus avoiding a specific location heat flux accumulation. As the divertor heat load is one of the significant concerns in tokamak, these results provide a promising choice, varying magnetic equilibrium periodically to shift stationary heat load deposition position during static n = 4 ( n is the toroidal mode number) RMP condition, for further fusion devices. In this respect the use of this technique for n =4 RMPs is advantageous because the q95 range that needs to be covered to spread the divertor heat load is reduced because of the smaller toroidal extent of off-separatrix heat deposition zones compared to lower n’s.","PeriodicalId":503481,"journal":{"name":"Nuclear Fusion","volume":"2 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic control of divertor heat flux during n = 4 RMP ELM suppression by small variation of q95 in EAST\",\"authors\":\"Hua Yang, Youwen Sun, M. Jia, A. Loarte, P. Xie, Q. Ma, Xuemin Wu, Cheng Ye, Yueqiang Liu, Jiale Chen, Ruirong Liang, Zhendong Yang, Gaoting Chen, Bin Zhang, Qing Zang, Kaixuan Ye\",\"doi\":\"10.1088/1741-4326/ad63b8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The experiment in EAST demonstrates effective modulation of the stationary heat flux to the secondary lobes of the magnetic footprint induced by the resonant magnetic perturbations (RMPs) by slightly varying the equilibrium q95, consistent with prior numerical modeling. During the small q95 variation, the edge localized mode (ELM) control is well maintained, and the position of the secondary heat flux peak is effectively shifted, thus avoiding a specific location heat flux accumulation. As the divertor heat load is one of the significant concerns in tokamak, these results provide a promising choice, varying magnetic equilibrium periodically to shift stationary heat load deposition position during static n = 4 ( n is the toroidal mode number) RMP condition, for further fusion devices. In this respect the use of this technique for n =4 RMPs is advantageous because the q95 range that needs to be covered to spread the divertor heat load is reduced because of the smaller toroidal extent of off-separatrix heat deposition zones compared to lower n’s.\",\"PeriodicalId\":503481,\"journal\":{\"name\":\"Nuclear Fusion\",\"volume\":\"2 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-4326/ad63b8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad63b8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
EAST 中的实验表明,通过稍微改变平衡 q95,可以有效调节共振磁扰动 (RMP) 诱导的磁足迹次叶的静态热通量,这与之前的数值建模一致。在 q95 的微小变化过程中,边缘局部模式 (ELM) 控制得到了很好的维持,二次热通量峰值的位置得到了有效的移动,从而避免了特定位置热通量的积累。在静态 n = 4(n 为环模数)RMP 条件下,由于岔道热负荷是托卡马克的主要问题之一,这些结果为进一步的核聚变装置提供了一个很有前途的选择,即周期性地改变磁平衡来移动静态热负荷沉积位置。在这方面,对 n = 4 RMP 使用这种技术是有优势的,因为与较低的 n 相比,偏离分离矩阵热沉积区的环形范围较小,因此分散分流器热负荷所需要覆盖的 q95 范围也就减小了。
Dynamic control of divertor heat flux during n = 4 RMP ELM suppression by small variation of q95 in EAST
The experiment in EAST demonstrates effective modulation of the stationary heat flux to the secondary lobes of the magnetic footprint induced by the resonant magnetic perturbations (RMPs) by slightly varying the equilibrium q95, consistent with prior numerical modeling. During the small q95 variation, the edge localized mode (ELM) control is well maintained, and the position of the secondary heat flux peak is effectively shifted, thus avoiding a specific location heat flux accumulation. As the divertor heat load is one of the significant concerns in tokamak, these results provide a promising choice, varying magnetic equilibrium periodically to shift stationary heat load deposition position during static n = 4 ( n is the toroidal mode number) RMP condition, for further fusion devices. In this respect the use of this technique for n =4 RMPs is advantageous because the q95 range that needs to be covered to spread the divertor heat load is reduced because of the smaller toroidal extent of off-separatrix heat deposition zones compared to lower n’s.