聚氨酯软泡沫的可燃性、毒性和微生物特性

Materials Pub Date : 2024-07-16 DOI:10.3390/ma17143517
Arkadiusz Głowacki, P. Rybiński, Grzegorz Czerwonka, W. Żukowski, U. Mirkhodjaev, Monika Zelezik
{"title":"聚氨酯软泡沫的可燃性、毒性和微生物特性","authors":"Arkadiusz Głowacki, P. Rybiński, Grzegorz Czerwonka, W. Żukowski, U. Mirkhodjaev, Monika Zelezik","doi":"10.3390/ma17143517","DOIUrl":null,"url":null,"abstract":"The aim of the research was to investigate the influence of calcium phosphinate (HPCA) and aluminum phosphinate (HPAL) in synergistic systems with organophosphorus compounds, i.e., diphenylcresyl phosphate (CDP) and trichloropropyl phosphate (TCPP), on the thermal stability, flammability, smoke density, and emission of toxic gases during the thermal decomposition of polyurethane (PUR) foams. Thermogravimetric analysis (TGA), along with cone calorimetry and microcalorimetry, were used to assess the influence of fillers on the thermal stability and flammability of PUR foams. The analysis of toxic gas products was performed with the use of a coupled TG–gas analyzer system. The optical density of gases was measured with the use of a smoke density chamber (SDC). The obtained results showed an increase in thermal stability and a decrease in the flammability of the PUR composites. However, the results regarding smoke and gas emissions, as well as toxic combustion by-products, present ambiguity. On one hand, the applied flame retardant systems in the form of PUR-HPCA-CDP and PUR-HPCA-TCPP led to a reduction in the concentration of CO and HCN in the gas by-products. On the other hand, they clearly increased the concentration of CO2, NOx, and smoke emissions. Microbiological studies indicated that the obtained foam material is completely safe for use and does not exhibit biocidal properties.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"4 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flammability, Toxicity, and Microbiological Properties of Polyurethane Flexible Foams\",\"authors\":\"Arkadiusz Głowacki, P. Rybiński, Grzegorz Czerwonka, W. Żukowski, U. Mirkhodjaev, Monika Zelezik\",\"doi\":\"10.3390/ma17143517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the research was to investigate the influence of calcium phosphinate (HPCA) and aluminum phosphinate (HPAL) in synergistic systems with organophosphorus compounds, i.e., diphenylcresyl phosphate (CDP) and trichloropropyl phosphate (TCPP), on the thermal stability, flammability, smoke density, and emission of toxic gases during the thermal decomposition of polyurethane (PUR) foams. Thermogravimetric analysis (TGA), along with cone calorimetry and microcalorimetry, were used to assess the influence of fillers on the thermal stability and flammability of PUR foams. The analysis of toxic gas products was performed with the use of a coupled TG–gas analyzer system. The optical density of gases was measured with the use of a smoke density chamber (SDC). The obtained results showed an increase in thermal stability and a decrease in the flammability of the PUR composites. However, the results regarding smoke and gas emissions, as well as toxic combustion by-products, present ambiguity. On one hand, the applied flame retardant systems in the form of PUR-HPCA-CDP and PUR-HPCA-TCPP led to a reduction in the concentration of CO and HCN in the gas by-products. On the other hand, they clearly increased the concentration of CO2, NOx, and smoke emissions. Microbiological studies indicated that the obtained foam material is completely safe for use and does not exhibit biocidal properties.\",\"PeriodicalId\":503043,\"journal\":{\"name\":\"Materials\",\"volume\":\"4 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ma17143517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ma17143517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该研究旨在调查膦酸钙(HPCA)和膦酸铝(HPAL)与有机磷化合物(即磷酸二苯基甲酚酯(CDP)和磷酸三氯丙酯(TCPP))协同作用体系对聚氨酯(PUR)泡沫热分解过程中的热稳定性、可燃性、烟密度和有毒气体排放的影响。热重分析(TGA)以及锥形量热仪和微量热仪被用来评估填料对聚氨酯泡沫热稳定性和可燃性的影响。有毒气体产物的分析是利用 TG 气体分析仪耦合系统进行的。气体的光密度使用烟密度室(SDC)进行测量。结果表明,聚氨酯复合材料的热稳定性提高,可燃性降低。然而,有关烟雾和气体排放以及有毒燃烧副产品的结果却不明确。一方面,PUR-HPCA-CDP 和 PUR-HPCA-TCPP 形式的阻燃系统降低了气体副产品中 CO 和 HCN 的浓度。另一方面,它们明显增加了 CO2、NOx 和烟雾排放的浓度。微生物学研究表明,所获得的泡沫材料完全可以安全使用,不具有杀菌特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flammability, Toxicity, and Microbiological Properties of Polyurethane Flexible Foams
The aim of the research was to investigate the influence of calcium phosphinate (HPCA) and aluminum phosphinate (HPAL) in synergistic systems with organophosphorus compounds, i.e., diphenylcresyl phosphate (CDP) and trichloropropyl phosphate (TCPP), on the thermal stability, flammability, smoke density, and emission of toxic gases during the thermal decomposition of polyurethane (PUR) foams. Thermogravimetric analysis (TGA), along with cone calorimetry and microcalorimetry, were used to assess the influence of fillers on the thermal stability and flammability of PUR foams. The analysis of toxic gas products was performed with the use of a coupled TG–gas analyzer system. The optical density of gases was measured with the use of a smoke density chamber (SDC). The obtained results showed an increase in thermal stability and a decrease in the flammability of the PUR composites. However, the results regarding smoke and gas emissions, as well as toxic combustion by-products, present ambiguity. On one hand, the applied flame retardant systems in the form of PUR-HPCA-CDP and PUR-HPCA-TCPP led to a reduction in the concentration of CO and HCN in the gas by-products. On the other hand, they clearly increased the concentration of CO2, NOx, and smoke emissions. Microbiological studies indicated that the obtained foam material is completely safe for use and does not exhibit biocidal properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信