Kevin de Castro Cogle, M. Kubo, F. Merlier, Alexandra Josse, M. Anastasiadi, F. Mohareb, Claire Rossi
{"title":"食物基质对姜黄素体外口服生物可及性影响的概率模型分析","authors":"Kevin de Castro Cogle, M. Kubo, F. Merlier, Alexandra Josse, M. Anastasiadi, F. Mohareb, Claire Rossi","doi":"10.3390/foods13142234","DOIUrl":null,"url":null,"abstract":"The bioaccessibility of bioactive compounds plays a major role in the nutritional value of foods, but there is a lack of systematic studies assessing the effect of the food matrix on bioaccessibility. Curcuminoids are phytochemicals extracted from Curcuma longa that have captured public attention due to claimed health benefits. The aim of this study is to develop a mathematical model to predict curcuminoid’s bioaccessibility in biscuits and custard based on different fibre type formulations. Bioaccessibilities for curcumin-enriched custards and biscuits were obtained through in vitro digestion, and physicochemical food properties were characterised. A strong correlation between macronutrient concentration and bioaccessibility was observed (p = 0.89) and chosen as a main explanatory variable in a Bayesian hierarchical linear regression model. Additionally, the patterns of food matrix effects on bioaccessibility were not the same in custards as in biscuits; for example, the hemicellulose content had a moderately strong positive correlation to bioaccessibility in biscuits (p = 0.66) which was non-significant in custards (p = 0.12). Using a Bayesian hierarchical approach to model these interactions resulted in an optimisation performance of r2 = 0.97 and a leave-one-out cross-validation score (LOOCV) of r2 = 0.93. This decision-support system could assist the food industry in optimising the formulation of novel food products and enable consumers to make more informed choices.","PeriodicalId":502667,"journal":{"name":"Foods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Modelling of the Food Matrix Effects on Curcuminoid’s In Vitro Oral Bioaccessibility\",\"authors\":\"Kevin de Castro Cogle, M. Kubo, F. Merlier, Alexandra Josse, M. Anastasiadi, F. Mohareb, Claire Rossi\",\"doi\":\"10.3390/foods13142234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bioaccessibility of bioactive compounds plays a major role in the nutritional value of foods, but there is a lack of systematic studies assessing the effect of the food matrix on bioaccessibility. Curcuminoids are phytochemicals extracted from Curcuma longa that have captured public attention due to claimed health benefits. The aim of this study is to develop a mathematical model to predict curcuminoid’s bioaccessibility in biscuits and custard based on different fibre type formulations. Bioaccessibilities for curcumin-enriched custards and biscuits were obtained through in vitro digestion, and physicochemical food properties were characterised. A strong correlation between macronutrient concentration and bioaccessibility was observed (p = 0.89) and chosen as a main explanatory variable in a Bayesian hierarchical linear regression model. Additionally, the patterns of food matrix effects on bioaccessibility were not the same in custards as in biscuits; for example, the hemicellulose content had a moderately strong positive correlation to bioaccessibility in biscuits (p = 0.66) which was non-significant in custards (p = 0.12). Using a Bayesian hierarchical approach to model these interactions resulted in an optimisation performance of r2 = 0.97 and a leave-one-out cross-validation score (LOOCV) of r2 = 0.93. This decision-support system could assist the food industry in optimising the formulation of novel food products and enable consumers to make more informed choices.\",\"PeriodicalId\":502667,\"journal\":{\"name\":\"Foods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foods13142234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foods13142234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probabilistic Modelling of the Food Matrix Effects on Curcuminoid’s In Vitro Oral Bioaccessibility
The bioaccessibility of bioactive compounds plays a major role in the nutritional value of foods, but there is a lack of systematic studies assessing the effect of the food matrix on bioaccessibility. Curcuminoids are phytochemicals extracted from Curcuma longa that have captured public attention due to claimed health benefits. The aim of this study is to develop a mathematical model to predict curcuminoid’s bioaccessibility in biscuits and custard based on different fibre type formulations. Bioaccessibilities for curcumin-enriched custards and biscuits were obtained through in vitro digestion, and physicochemical food properties were characterised. A strong correlation between macronutrient concentration and bioaccessibility was observed (p = 0.89) and chosen as a main explanatory variable in a Bayesian hierarchical linear regression model. Additionally, the patterns of food matrix effects on bioaccessibility were not the same in custards as in biscuits; for example, the hemicellulose content had a moderately strong positive correlation to bioaccessibility in biscuits (p = 0.66) which was non-significant in custards (p = 0.12). Using a Bayesian hierarchical approach to model these interactions resulted in an optimisation performance of r2 = 0.97 and a leave-one-out cross-validation score (LOOCV) of r2 = 0.93. This decision-support system could assist the food industry in optimising the formulation of novel food products and enable consumers to make more informed choices.