{"title":"带提升机构和自动底部固定果轴的香蕉束运输装置的设计与实验研究","authors":"Weiqin Li, Zhou Yang, Xing Xu, Weixi Li, Xingkang Mo, Jiaxiang Yu, Jieli Duan","doi":"10.3390/agriculture14071161","DOIUrl":null,"url":null,"abstract":"In addressing the challenges of high labor intensity, cost, and potential mechanical damage to banana fruit in orchards, this study presents the design of a banana bunch transport device featuring a lifting mechanism and an automatic fruit shaft bottom-fixing system. The device is tailored to the planting and morphological characteristics of banana bunches, aiming for efficient, low-loss, and labor-saving mechanized transport. Key design considerations included the anti-overturning mechanism and the lifting system based on transportation conditions and the physical dimensions of banana bunches. A dynamic simulation was conducted to analyze the angular velocity and acceleration during the initial conveying stages, forming the basis for the fruit shaft bottom-fixation mechanism. A novel horizontal multi-point scanning method was developed to accurately identify and secure the fruit shaft bottom, complemented by an automated control system. Experimental results showed a 95.83% success rate in identification and fixation, validated by field trials that confirmed the necessity and stability of the fixation mechanism. To enhance the durability of the fruit shaft bottom-fixation mechanism, a multi-factor test was conducted, optimizing the device’s maximum travel speed and minimizing the banana bunch’s oscillation angle. Field tests showed an oscillation angle of 8.961°, closely matching the simulated result of 9.526°, demonstrating the reliability of the response surface analysis model. This study offers a practical and efficient solution for banana bunch transport in orchards, showcasing significant practical value and potential for wider adoption.","PeriodicalId":7447,"journal":{"name":"Agriculture","volume":"14 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Experimental Study of Banana Bunch Transportation Device with Lifting Mechanism and Automatic Bottom-Fixing Fruit Shaft\",\"authors\":\"Weiqin Li, Zhou Yang, Xing Xu, Weixi Li, Xingkang Mo, Jiaxiang Yu, Jieli Duan\",\"doi\":\"10.3390/agriculture14071161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In addressing the challenges of high labor intensity, cost, and potential mechanical damage to banana fruit in orchards, this study presents the design of a banana bunch transport device featuring a lifting mechanism and an automatic fruit shaft bottom-fixing system. The device is tailored to the planting and morphological characteristics of banana bunches, aiming for efficient, low-loss, and labor-saving mechanized transport. Key design considerations included the anti-overturning mechanism and the lifting system based on transportation conditions and the physical dimensions of banana bunches. A dynamic simulation was conducted to analyze the angular velocity and acceleration during the initial conveying stages, forming the basis for the fruit shaft bottom-fixation mechanism. A novel horizontal multi-point scanning method was developed to accurately identify and secure the fruit shaft bottom, complemented by an automated control system. Experimental results showed a 95.83% success rate in identification and fixation, validated by field trials that confirmed the necessity and stability of the fixation mechanism. To enhance the durability of the fruit shaft bottom-fixation mechanism, a multi-factor test was conducted, optimizing the device’s maximum travel speed and minimizing the banana bunch’s oscillation angle. Field tests showed an oscillation angle of 8.961°, closely matching the simulated result of 9.526°, demonstrating the reliability of the response surface analysis model. This study offers a practical and efficient solution for banana bunch transport in orchards, showcasing significant practical value and potential for wider adoption.\",\"PeriodicalId\":7447,\"journal\":{\"name\":\"Agriculture\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriculture14071161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriculture14071161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Design and Experimental Study of Banana Bunch Transportation Device with Lifting Mechanism and Automatic Bottom-Fixing Fruit Shaft
In addressing the challenges of high labor intensity, cost, and potential mechanical damage to banana fruit in orchards, this study presents the design of a banana bunch transport device featuring a lifting mechanism and an automatic fruit shaft bottom-fixing system. The device is tailored to the planting and morphological characteristics of banana bunches, aiming for efficient, low-loss, and labor-saving mechanized transport. Key design considerations included the anti-overturning mechanism and the lifting system based on transportation conditions and the physical dimensions of banana bunches. A dynamic simulation was conducted to analyze the angular velocity and acceleration during the initial conveying stages, forming the basis for the fruit shaft bottom-fixation mechanism. A novel horizontal multi-point scanning method was developed to accurately identify and secure the fruit shaft bottom, complemented by an automated control system. Experimental results showed a 95.83% success rate in identification and fixation, validated by field trials that confirmed the necessity and stability of the fixation mechanism. To enhance the durability of the fruit shaft bottom-fixation mechanism, a multi-factor test was conducted, optimizing the device’s maximum travel speed and minimizing the banana bunch’s oscillation angle. Field tests showed an oscillation angle of 8.961°, closely matching the simulated result of 9.526°, demonstrating the reliability of the response surface analysis model. This study offers a practical and efficient solution for banana bunch transport in orchards, showcasing significant practical value and potential for wider adoption.
AgricultureAgricultural and Biological Sciences-Horticulture
CiteScore
1.90
自引率
0.00%
发文量
4
审稿时长
11 weeks
期刊介绍:
The Agriculture (Poľnohospodárstvo) is a peer-reviewed international journal that publishes mainly original research papers. The journal examines various aspects of research and is devoted to the publication of papers dealing with the following subjects: plant nutrition, protection, breeding, genetics and biotechnology, quality of plant products, grassland, mountain agriculture and environment, soil science and conservation, mechanization and economics of plant production and other spheres of plant science. Journal is published 4 times per year.