{"title":"人鱼号自主浮筒水声远震地震记录的波形建模","authors":"Sirawich Pipatprathanporn, Frederik J Simons","doi":"10.1093/gji/ggae238","DOIUrl":null,"url":null,"abstract":"\n We present a computational technique to model hydroacoustic waveforms from teleseismic earthquakes recorded by mid-column Mermaid floats deployed in the Pacific, taking into consideration bathymetric effects that modify seismo-acoustic conversions at the ocean bottom and acoustic wave propagation in the ocean layer, including reverberations. Our approach couples axisymmetric spectral-element simulations performed for moment-tensor earthquakes in a one-dimensional solid Earth to a two-dimensional Cartesian fluid-solid coupled spectral-element simulation that captures the conversion from displacement to acoustic pressure at an ocean-bottom interface with accurate bathymetry. We applied our workflow to 1,129 seismograms for 682 earthquakes from 16 Mermaids owned by Princeton University that were deployed in the Southern Pacific as part of the South Pacific Plume Imaging and Modeling (SPPIM) project. We compare the modeled synthetic waveforms to the observed records in individually selected frequency bands aimed at reducing local noise levels while maximizing earthquake-generated signal content. The modeled waveforms match the observations very well, with a median correlation coefficient of 0.72, and some as high as 0.95. We compare our correlation-based travel-time measurements to measurements made on the same data sets determined by automated arrival-time picking and ray-traced travel-time predictions, with the aim of opening up the use of Mermaid records for global seismic tomography via full-waveform inversion.","PeriodicalId":502458,"journal":{"name":"Geophysical Journal International","volume":"7 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Waveform modeling of hydroacoustic teleseismic earthquake records from autonomous Mermaid floats\",\"authors\":\"Sirawich Pipatprathanporn, Frederik J Simons\",\"doi\":\"10.1093/gji/ggae238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present a computational technique to model hydroacoustic waveforms from teleseismic earthquakes recorded by mid-column Mermaid floats deployed in the Pacific, taking into consideration bathymetric effects that modify seismo-acoustic conversions at the ocean bottom and acoustic wave propagation in the ocean layer, including reverberations. Our approach couples axisymmetric spectral-element simulations performed for moment-tensor earthquakes in a one-dimensional solid Earth to a two-dimensional Cartesian fluid-solid coupled spectral-element simulation that captures the conversion from displacement to acoustic pressure at an ocean-bottom interface with accurate bathymetry. We applied our workflow to 1,129 seismograms for 682 earthquakes from 16 Mermaids owned by Princeton University that were deployed in the Southern Pacific as part of the South Pacific Plume Imaging and Modeling (SPPIM) project. We compare the modeled synthetic waveforms to the observed records in individually selected frequency bands aimed at reducing local noise levels while maximizing earthquake-generated signal content. The modeled waveforms match the observations very well, with a median correlation coefficient of 0.72, and some as high as 0.95. We compare our correlation-based travel-time measurements to measurements made on the same data sets determined by automated arrival-time picking and ray-traced travel-time predictions, with the aim of opening up the use of Mermaid records for global seismic tomography via full-waveform inversion.\",\"PeriodicalId\":502458,\"journal\":{\"name\":\"Geophysical Journal International\",\"volume\":\"7 34\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Journal International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gji/ggae238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gji/ggae238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Waveform modeling of hydroacoustic teleseismic earthquake records from autonomous Mermaid floats
We present a computational technique to model hydroacoustic waveforms from teleseismic earthquakes recorded by mid-column Mermaid floats deployed in the Pacific, taking into consideration bathymetric effects that modify seismo-acoustic conversions at the ocean bottom and acoustic wave propagation in the ocean layer, including reverberations. Our approach couples axisymmetric spectral-element simulations performed for moment-tensor earthquakes in a one-dimensional solid Earth to a two-dimensional Cartesian fluid-solid coupled spectral-element simulation that captures the conversion from displacement to acoustic pressure at an ocean-bottom interface with accurate bathymetry. We applied our workflow to 1,129 seismograms for 682 earthquakes from 16 Mermaids owned by Princeton University that were deployed in the Southern Pacific as part of the South Pacific Plume Imaging and Modeling (SPPIM) project. We compare the modeled synthetic waveforms to the observed records in individually selected frequency bands aimed at reducing local noise levels while maximizing earthquake-generated signal content. The modeled waveforms match the observations very well, with a median correlation coefficient of 0.72, and some as high as 0.95. We compare our correlation-based travel-time measurements to measurements made on the same data sets determined by automated arrival-time picking and ray-traced travel-time predictions, with the aim of opening up the use of Mermaid records for global seismic tomography via full-waveform inversion.