利用各种机器学习技术对僵尸网络入侵检测进行系统研究

Archana Kalidindi, Mahesh Babu Arrama
{"title":"利用各种机器学习技术对僵尸网络入侵检测进行系统研究","authors":"Archana Kalidindi, Mahesh Babu Arrama","doi":"10.3991/ijoe.v20i10.49509","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) is growing rapidly in an exponential manner due to its versatility in technology. This has led to many challenges in securing the IoT environment. Devices in IoT environments are vulnerable to various cyberattacks. Botnet-based attacks are predominant and widespread in nature. Due to insufficient memory and computational power, the IoT environment cannot handle the botnet attack that affects security. Identifying intrusions in IoT environments is another challenge for researchers. Finding unknown patterns in the data generated through IoT networks helps improve security in the IoT environment. Machine learning (ML) is a platform that helps identify patterns in the provided data. In this study, we present our research on classifying incoming data from the IoT as malicious or benign using machine learning techniques. We propose an ML-based botnet attack detection framework for nine commercial IoT devices that primarily target BASHLITE and Mirai botnet attacks. Rigorous pragmatic research was conducted on the N-BaIoT dataset, which was extracted from realtime IoT devices connected to a network. Using this framework, the results have been depicted, which can efficiently detect botnet attacks and can also be applied to any other types of attacks.","PeriodicalId":507997,"journal":{"name":"International Journal of Online and Biomedical Engineering (iJOE)","volume":"3 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Systematic Investigation on Botnet Intrusion Detection Using Various Machine Learning Techniques\",\"authors\":\"Archana Kalidindi, Mahesh Babu Arrama\",\"doi\":\"10.3991/ijoe.v20i10.49509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) is growing rapidly in an exponential manner due to its versatility in technology. This has led to many challenges in securing the IoT environment. Devices in IoT environments are vulnerable to various cyberattacks. Botnet-based attacks are predominant and widespread in nature. Due to insufficient memory and computational power, the IoT environment cannot handle the botnet attack that affects security. Identifying intrusions in IoT environments is another challenge for researchers. Finding unknown patterns in the data generated through IoT networks helps improve security in the IoT environment. Machine learning (ML) is a platform that helps identify patterns in the provided data. In this study, we present our research on classifying incoming data from the IoT as malicious or benign using machine learning techniques. We propose an ML-based botnet attack detection framework for nine commercial IoT devices that primarily target BASHLITE and Mirai botnet attacks. Rigorous pragmatic research was conducted on the N-BaIoT dataset, which was extracted from realtime IoT devices connected to a network. Using this framework, the results have been depicted, which can efficiently detect botnet attacks and can also be applied to any other types of attacks.\",\"PeriodicalId\":507997,\"journal\":{\"name\":\"International Journal of Online and Biomedical Engineering (iJOE)\",\"volume\":\"3 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Online and Biomedical Engineering (iJOE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijoe.v20i10.49509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering (iJOE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v20i10.49509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于技术的多样性,物联网(IoT)正以指数级的方式迅速发展。这给物联网环境的安全带来了许多挑战。物联网环境中的设备容易受到各种网络攻击。基于僵尸网络的攻击在本质上占主导地位,而且非常普遍。由于内存和计算能力不足,物联网环境无法应对影响安全的僵尸网络攻击。识别物联网环境中的入侵是研究人员面临的另一个挑战。在物联网网络生成的数据中寻找未知模式有助于提高物联网环境的安全性。机器学习(ML)是一个有助于从所提供的数据中识别模式的平台。在本研究中,我们介绍了利用机器学习技术将来自物联网的传入数据分类为恶意或良性数据的研究。我们为九种商用物联网设备提出了基于 ML 的僵尸网络攻击检测框架,这些设备主要针对 BASHLITE 和 Mirai 僵尸网络攻击。我们在 N-BaIoT 数据集上进行了严格务实的研究,该数据集是从连接到网络的实时物联网设备中提取的。使用该框架描绘的结果可以有效地检测僵尸网络攻击,也可应用于任何其他类型的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Systematic Investigation on Botnet Intrusion Detection Using Various Machine Learning Techniques
The Internet of Things (IoT) is growing rapidly in an exponential manner due to its versatility in technology. This has led to many challenges in securing the IoT environment. Devices in IoT environments are vulnerable to various cyberattacks. Botnet-based attacks are predominant and widespread in nature. Due to insufficient memory and computational power, the IoT environment cannot handle the botnet attack that affects security. Identifying intrusions in IoT environments is another challenge for researchers. Finding unknown patterns in the data generated through IoT networks helps improve security in the IoT environment. Machine learning (ML) is a platform that helps identify patterns in the provided data. In this study, we present our research on classifying incoming data from the IoT as malicious or benign using machine learning techniques. We propose an ML-based botnet attack detection framework for nine commercial IoT devices that primarily target BASHLITE and Mirai botnet attacks. Rigorous pragmatic research was conducted on the N-BaIoT dataset, which was extracted from realtime IoT devices connected to a network. Using this framework, the results have been depicted, which can efficiently detect botnet attacks and can also be applied to any other types of attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信