{"title":"通过服用植物乳杆菌 APsulloc 331261 (GTB1™) 全面改善高脂饮食小鼠的代谢功能障碍","authors":"Bobae Kim, Yuri Lee, Chungho Lee, Eun Sung Jung, Hyeji Kang, W.H. Holzapfel","doi":"10.3390/foods13142227","DOIUrl":null,"url":null,"abstract":"The beneficial effects of probiotics for the improvement of metabolic disorders have been studied intensively; however, these effects are evident in a probiotic strain-specific and disease-specific manner. Thus, it is still essential to evaluate the efficacy of each strain against a target disease. Here, we present an anti-obese and anti-diabetic probiotic strain, Lactiplantibacillus plantarum APsulloc331261 (GTB1™), which was isolated from green tea and tested for safety previously. In high-fat-diet-induced obese mice, GTB1™ exerted multiple beneficial effects, including significant reductions in adiposity, glucose intolerance, and dyslipidemia, which were further supported by improvements in levels of circulating hormones and adipokines. Lipid metabolism in adipose tissues was restored through the activation of PPAR/PGC1α signaling by GTB1™ treatment, which was facilitated by intestinal microbiota composition changes and short-chain fatty acid production. Our findings provide evidence to suggest that GTB1™ is a potential candidate for probiotic supplementation for comprehensive improvement in metabolic disorders.","PeriodicalId":502667,"journal":{"name":"Foods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Amelioration of Metabolic Dysfunction through Administration of Lactiplantibacillus plantarum APsulloc 331261 (GTB1™) in High-Fat-Diet-Fed Mice\",\"authors\":\"Bobae Kim, Yuri Lee, Chungho Lee, Eun Sung Jung, Hyeji Kang, W.H. Holzapfel\",\"doi\":\"10.3390/foods13142227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The beneficial effects of probiotics for the improvement of metabolic disorders have been studied intensively; however, these effects are evident in a probiotic strain-specific and disease-specific manner. Thus, it is still essential to evaluate the efficacy of each strain against a target disease. Here, we present an anti-obese and anti-diabetic probiotic strain, Lactiplantibacillus plantarum APsulloc331261 (GTB1™), which was isolated from green tea and tested for safety previously. In high-fat-diet-induced obese mice, GTB1™ exerted multiple beneficial effects, including significant reductions in adiposity, glucose intolerance, and dyslipidemia, which were further supported by improvements in levels of circulating hormones and adipokines. Lipid metabolism in adipose tissues was restored through the activation of PPAR/PGC1α signaling by GTB1™ treatment, which was facilitated by intestinal microbiota composition changes and short-chain fatty acid production. Our findings provide evidence to suggest that GTB1™ is a potential candidate for probiotic supplementation for comprehensive improvement in metabolic disorders.\",\"PeriodicalId\":502667,\"journal\":{\"name\":\"Foods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foods13142227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foods13142227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comprehensive Amelioration of Metabolic Dysfunction through Administration of Lactiplantibacillus plantarum APsulloc 331261 (GTB1™) in High-Fat-Diet-Fed Mice
The beneficial effects of probiotics for the improvement of metabolic disorders have been studied intensively; however, these effects are evident in a probiotic strain-specific and disease-specific manner. Thus, it is still essential to evaluate the efficacy of each strain against a target disease. Here, we present an anti-obese and anti-diabetic probiotic strain, Lactiplantibacillus plantarum APsulloc331261 (GTB1™), which was isolated from green tea and tested for safety previously. In high-fat-diet-induced obese mice, GTB1™ exerted multiple beneficial effects, including significant reductions in adiposity, glucose intolerance, and dyslipidemia, which were further supported by improvements in levels of circulating hormones and adipokines. Lipid metabolism in adipose tissues was restored through the activation of PPAR/PGC1α signaling by GTB1™ treatment, which was facilitated by intestinal microbiota composition changes and short-chain fatty acid production. Our findings provide evidence to suggest that GTB1™ is a potential candidate for probiotic supplementation for comprehensive improvement in metabolic disorders.