Xu Pei, Shi-Long Zhang, Bai-Quan Qiu, Peng-Fei Zhang, Tian-Shu Liu, Yan Wang
{"title":"癌细胞分泌的豆豆蛋白酶通过增强巨噬细胞M2极化促进胃癌对抗PD-1免疫疗法的抵抗力","authors":"Xu Pei, Shi-Long Zhang, Bai-Quan Qiu, Peng-Fei Zhang, Tian-Shu Liu, Yan Wang","doi":"10.3390/ph17070951","DOIUrl":null,"url":null,"abstract":"The interaction between cancer cells and immune cells plays critical roles in gastric cancer (GC) progression and immune evasion. Forced legumain (LGMN) is one of the characteristics correlated with poor prognosis in gastric cancer patients. However, the role of gastric-cancer-secreted LGMN (sLGMN) in modulating the tumor immune microenvironment and the biological effect on the immune evasion of gastric cancer remains unclear. In this study, we found that forced expression of sLGMN in gastric cancer serum correlates with increased M2 macrophage infiltration in GC tissues and predicted resistance to anti-PD-1 immunotherapy. Mechanistically, gastric cancer cells secrete LGMN via binding to cell surface Integrin αvβ3, then activate Integrin αvβ3/PI3K (Phosphatidylinositol-4,5-bisphosphate3-kinase)/AKT (serine/threonine kinase)/mTORC2 (mammalian target of rapamycin complex 2) signaling, promote metabolic reprogramming, and polarize macrophages from the M1 to the M2 phenotype. Either blocking LGMN, Integrin αv, or knocking out Integrin αv expression and abolishing the LGMN/Integrin αvβ3 interaction significantly inhibits metabolic reprogramming and polarizes macrophages from the M1 to the M2 phenotype. This study reveals a critical molecular crosstalk between gastric cancer cells and macrophages through the sLGMN/Integrinαvβ3/PI3K/AKT/mTORC2 axis in promoting gastric cancer immune evasion and resistance to anti-PD-1 immunotherapy, indicating that the sLGMN/Integrinαvβ3/PI3K/AKT/mTORC2 axis may act as a promising therapeutic target.","PeriodicalId":509865,"journal":{"name":"Pharmaceuticals","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cancer Cell Secreted Legumain Promotes Gastric Cancer Resistance to Anti-PD-1 Immunotherapy by Enhancing Macrophage M2 Polarization\",\"authors\":\"Xu Pei, Shi-Long Zhang, Bai-Quan Qiu, Peng-Fei Zhang, Tian-Shu Liu, Yan Wang\",\"doi\":\"10.3390/ph17070951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interaction between cancer cells and immune cells plays critical roles in gastric cancer (GC) progression and immune evasion. Forced legumain (LGMN) is one of the characteristics correlated with poor prognosis in gastric cancer patients. However, the role of gastric-cancer-secreted LGMN (sLGMN) in modulating the tumor immune microenvironment and the biological effect on the immune evasion of gastric cancer remains unclear. In this study, we found that forced expression of sLGMN in gastric cancer serum correlates with increased M2 macrophage infiltration in GC tissues and predicted resistance to anti-PD-1 immunotherapy. Mechanistically, gastric cancer cells secrete LGMN via binding to cell surface Integrin αvβ3, then activate Integrin αvβ3/PI3K (Phosphatidylinositol-4,5-bisphosphate3-kinase)/AKT (serine/threonine kinase)/mTORC2 (mammalian target of rapamycin complex 2) signaling, promote metabolic reprogramming, and polarize macrophages from the M1 to the M2 phenotype. Either blocking LGMN, Integrin αv, or knocking out Integrin αv expression and abolishing the LGMN/Integrin αvβ3 interaction significantly inhibits metabolic reprogramming and polarizes macrophages from the M1 to the M2 phenotype. This study reveals a critical molecular crosstalk between gastric cancer cells and macrophages through the sLGMN/Integrinαvβ3/PI3K/AKT/mTORC2 axis in promoting gastric cancer immune evasion and resistance to anti-PD-1 immunotherapy, indicating that the sLGMN/Integrinαvβ3/PI3K/AKT/mTORC2 axis may act as a promising therapeutic target.\",\"PeriodicalId\":509865,\"journal\":{\"name\":\"Pharmaceuticals\",\"volume\":\"4 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceuticals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ph17070951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ph17070951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cancer Cell Secreted Legumain Promotes Gastric Cancer Resistance to Anti-PD-1 Immunotherapy by Enhancing Macrophage M2 Polarization
The interaction between cancer cells and immune cells plays critical roles in gastric cancer (GC) progression and immune evasion. Forced legumain (LGMN) is one of the characteristics correlated with poor prognosis in gastric cancer patients. However, the role of gastric-cancer-secreted LGMN (sLGMN) in modulating the tumor immune microenvironment and the biological effect on the immune evasion of gastric cancer remains unclear. In this study, we found that forced expression of sLGMN in gastric cancer serum correlates with increased M2 macrophage infiltration in GC tissues and predicted resistance to anti-PD-1 immunotherapy. Mechanistically, gastric cancer cells secrete LGMN via binding to cell surface Integrin αvβ3, then activate Integrin αvβ3/PI3K (Phosphatidylinositol-4,5-bisphosphate3-kinase)/AKT (serine/threonine kinase)/mTORC2 (mammalian target of rapamycin complex 2) signaling, promote metabolic reprogramming, and polarize macrophages from the M1 to the M2 phenotype. Either blocking LGMN, Integrin αv, or knocking out Integrin αv expression and abolishing the LGMN/Integrin αvβ3 interaction significantly inhibits metabolic reprogramming and polarizes macrophages from the M1 to the M2 phenotype. This study reveals a critical molecular crosstalk between gastric cancer cells and macrophages through the sLGMN/Integrinαvβ3/PI3K/AKT/mTORC2 axis in promoting gastric cancer immune evasion and resistance to anti-PD-1 immunotherapy, indicating that the sLGMN/Integrinαvβ3/PI3K/AKT/mTORC2 axis may act as a promising therapeutic target.