与退化化合吸引模型相关的最优控制问题的良好拟合

Q3 Mathematics
Sarah Serhal, Georges Chamoun, Mazen Saad, Toni Sayah
{"title":"与退化化合吸引模型相关的最优控制问题的良好拟合","authors":"Sarah Serhal, Georges Chamoun, Mazen Saad, Toni Sayah","doi":"10.37394/23203.2024.19.21","DOIUrl":null,"url":null,"abstract":"This paper delves into the mathematical analysis of optimal control for a nonlinear degenerate chemotaxis model with volume-filling effects. The control is applied in a bilinear form specifically within the chemical equation. We establish the well-posedness (existence and uniqueness) of the weak solution for the direct problem using the Faedo Galerkin method (for existence), and the duality method (for uniqueness). Additionally, we demonstrate the existence of minimizers and establish first-order necessary conditions for the adjoint problem. The main novelty of this work concerns the degeneracy of the diffusive term and the presence of control over the concentration in our nonlinear degenerate chemotaxis model. Furthermore, the state, consisting of cell density and chemical concentration, remains in a weak setting, which is uncommon in the literature for solving optimal control problems involving chemotaxis models.","PeriodicalId":39422,"journal":{"name":"WSEAS Transactions on Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness of the Optimal Control Problem Related to Degenerate Chemo-attraction Models\",\"authors\":\"Sarah Serhal, Georges Chamoun, Mazen Saad, Toni Sayah\",\"doi\":\"10.37394/23203.2024.19.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper delves into the mathematical analysis of optimal control for a nonlinear degenerate chemotaxis model with volume-filling effects. The control is applied in a bilinear form specifically within the chemical equation. We establish the well-posedness (existence and uniqueness) of the weak solution for the direct problem using the Faedo Galerkin method (for existence), and the duality method (for uniqueness). Additionally, we demonstrate the existence of minimizers and establish first-order necessary conditions for the adjoint problem. The main novelty of this work concerns the degeneracy of the diffusive term and the presence of control over the concentration in our nonlinear degenerate chemotaxis model. Furthermore, the state, consisting of cell density and chemical concentration, remains in a weak setting, which is uncommon in the literature for solving optimal control problems involving chemotaxis models.\",\"PeriodicalId\":39422,\"journal\":{\"name\":\"WSEAS Transactions on Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23203.2024.19.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23203.2024.19.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文深入探讨了具有体积填充效应的非线性退化趋化模型优化控制的数学分析。控制以双线性形式应用于化学方程中。我们使用 Faedo Galerkin 方法(针对存在性)和对偶性方法(针对唯一性)建立了直接问题弱解的好求解性(存在性和唯一性)。此外,我们还证明了最小值的存在,并为邻接问题建立了一阶必要条件。这项研究的主要新颖之处在于非线性退化趋化模型中扩散项的退化性和浓度控制的存在。此外,由细胞密度和化学浓度组成的状态保持在弱设置中,这在解决涉及趋化模型的最优控制问题的文献中并不常见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness of the Optimal Control Problem Related to Degenerate Chemo-attraction Models
This paper delves into the mathematical analysis of optimal control for a nonlinear degenerate chemotaxis model with volume-filling effects. The control is applied in a bilinear form specifically within the chemical equation. We establish the well-posedness (existence and uniqueness) of the weak solution for the direct problem using the Faedo Galerkin method (for existence), and the duality method (for uniqueness). Additionally, we demonstrate the existence of minimizers and establish first-order necessary conditions for the adjoint problem. The main novelty of this work concerns the degeneracy of the diffusive term and the presence of control over the concentration in our nonlinear degenerate chemotaxis model. Furthermore, the state, consisting of cell density and chemical concentration, remains in a weak setting, which is uncommon in the literature for solving optimal control problems involving chemotaxis models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Systems and Control
WSEAS Transactions on Systems and Control Mathematics-Control and Optimization
CiteScore
1.80
自引率
0.00%
发文量
49
期刊介绍: WSEAS Transactions on Systems and Control publishes original research papers relating to systems theory and automatic control. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with systems theory, dynamical systems, linear and non-linear control, intelligent control, robotics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信