V.S.V. Krishna Murty, C. Jaya Subba Reddy, K. Sukanya
{"title":"口形广义 ( 𝜎 , 𝜏 ) (σ,τ) --半音 Γ Γ --耳环的派生词","authors":"V.S.V. Krishna Murty, C. Jaya Subba Reddy, K. Sukanya","doi":"10.37418/amsj.13.3.4","DOIUrl":null,"url":null,"abstract":"Consider a 2-torsion-free semiprime \\(\\Gamma\\)-near ring \\(N\\). Assume that \\(\\sigma\\) and \\(\\tau\\) are automorphisms on \\(N\\). An additive map \\(d_1: N \\to N\\) is called a \\((\\sigma, \\tau)\\)-derivation if it satisfies \\[d_1(u \\alpha v) = d_1(u) \\alpha \\sigma(v) + \\tau(u) \\alpha d_1(v) \\]for all \\(u, v \\in N\\) and \\(\\alpha \\in \\Gamma\\). An additive map \\(D_1: N \\to N\\) is termed a generalized \\((\\sigma, \\tau)\\)-derivation associated with the \\((\\sigma, \\tau)\\)-derivation \\(d_1\\) if \\[D_1(u \\alpha v) = D_1(u) \\alpha \\sigma(v) + \\tau(u) \\alpha d_1(v)\\]for all \\(u, v \\in N\\) and \\(\\alpha \\in \\Gamma\\). Consider two generalized\\hspace{0.1cm} \\((\\sigma, \\tau)\\)-derivations \\(D_1\\) and \\(D_2\\) on \\(N\\). This paper introduces the concept of the orthogonality of two generalized \\((\\sigma, \\tau)\\)-derivations \\(D_1\\) and \\(D_2\\) and presents several results regarding the orthogonality of generalized \\((\\sigma, \\tau)\\)-derivations and \\((\\sigma, \\tau)\\)-derivations in a \\(\\Gamma\\)-near ring.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"31 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ORTHOGONAL GENERALIZED ( 𝜎 , 𝜏 ) (σ,τ)-DERIVATIONS IN SEMIPRIME Γ Γ-NEAR RINGS\",\"authors\":\"V.S.V. Krishna Murty, C. Jaya Subba Reddy, K. Sukanya\",\"doi\":\"10.37418/amsj.13.3.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a 2-torsion-free semiprime \\\\(\\\\Gamma\\\\)-near ring \\\\(N\\\\). Assume that \\\\(\\\\sigma\\\\) and \\\\(\\\\tau\\\\) are automorphisms on \\\\(N\\\\). An additive map \\\\(d_1: N \\\\to N\\\\) is called a \\\\((\\\\sigma, \\\\tau)\\\\)-derivation if it satisfies \\\\[d_1(u \\\\alpha v) = d_1(u) \\\\alpha \\\\sigma(v) + \\\\tau(u) \\\\alpha d_1(v) \\\\]for all \\\\(u, v \\\\in N\\\\) and \\\\(\\\\alpha \\\\in \\\\Gamma\\\\). An additive map \\\\(D_1: N \\\\to N\\\\) is termed a generalized \\\\((\\\\sigma, \\\\tau)\\\\)-derivation associated with the \\\\((\\\\sigma, \\\\tau)\\\\)-derivation \\\\(d_1\\\\) if \\\\[D_1(u \\\\alpha v) = D_1(u) \\\\alpha \\\\sigma(v) + \\\\tau(u) \\\\alpha d_1(v)\\\\]for all \\\\(u, v \\\\in N\\\\) and \\\\(\\\\alpha \\\\in \\\\Gamma\\\\). Consider two generalized\\\\hspace{0.1cm} \\\\((\\\\sigma, \\\\tau)\\\\)-derivations \\\\(D_1\\\\) and \\\\(D_2\\\\) on \\\\(N\\\\). This paper introduces the concept of the orthogonality of two generalized \\\\((\\\\sigma, \\\\tau)\\\\)-derivations \\\\(D_1\\\\) and \\\\(D_2\\\\) and presents several results regarding the orthogonality of generalized \\\\((\\\\sigma, \\\\tau)\\\\)-derivations and \\\\((\\\\sigma, \\\\tau)\\\\)-derivations in a \\\\(\\\\Gamma\\\\)-near ring.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"31 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.13.3.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.13.3.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
考虑一个无二扭的半环(Gamma)-近环(N)。假设\(\sigma\) 和\(\tau\)是\(N\)上的自变量。一个加法映射 (d_1:如果它满足[d_1(u \alpha v) = d_1(u) \alpha \sigma(v) + \tau(u) \alpha d_1(v) ] for all \(u, v \in N\) and\(\alpha \in \Gamma),那么它就叫做一个(((sigma, tau))衍生。)一个加法映射 (D_1:N到N)被称为与(((西格玛、\D_1(u α v) = D_1(u) α \sigma(v) + \tau(u) \α d_1(v)\]for all \(u, v \in N\) and\(\alpha \in \Gamma\).考虑两个广义空间{0.1cm}\上的(D_1)和(D_2)的衍生。本文介绍了两个广义的((\sigma, \tau))支点((D_1)和(D_2))的正交性概念,并给出了关于广义的((\sigma, \tau))支点和((\sigma, \tau))支点在(\Gamma)近环中的正交性的几个结果。
Consider a 2-torsion-free semiprime \(\Gamma\)-near ring \(N\). Assume that \(\sigma\) and \(\tau\) are automorphisms on \(N\). An additive map \(d_1: N \to N\) is called a \((\sigma, \tau)\)-derivation if it satisfies \[d_1(u \alpha v) = d_1(u) \alpha \sigma(v) + \tau(u) \alpha d_1(v) \]for all \(u, v \in N\) and \(\alpha \in \Gamma\). An additive map \(D_1: N \to N\) is termed a generalized \((\sigma, \tau)\)-derivation associated with the \((\sigma, \tau)\)-derivation \(d_1\) if \[D_1(u \alpha v) = D_1(u) \alpha \sigma(v) + \tau(u) \alpha d_1(v)\]for all \(u, v \in N\) and \(\alpha \in \Gamma\). Consider two generalized\hspace{0.1cm} \((\sigma, \tau)\)-derivations \(D_1\) and \(D_2\) on \(N\). This paper introduces the concept of the orthogonality of two generalized \((\sigma, \tau)\)-derivations \(D_1\) and \(D_2\) and presents several results regarding the orthogonality of generalized \((\sigma, \tau)\)-derivations and \((\sigma, \tau)\)-derivations in a \(\Gamma\)-near ring.