受热板材法向应力裂纹的奇异积分方程

S.K. Zhuang, N. N. Nik Long, K. Hamzah, N. Senu
{"title":"受热板材法向应力裂纹的奇异积分方程","authors":"S.K. Zhuang, N. N. Nik Long, K. Hamzah, N. Senu","doi":"10.37418/amsj.13.3.3","DOIUrl":null,"url":null,"abstract":"In this paper, a crack in a heated plate is investigated, subjected to normal stress. Employing the relationship between the uniform and perturbation fields, as well as complex potential functions and stresses, the problems of heat conduction and heat stress are modeled as singular integral equations. The derivatives of the crack opening displacement function and the temperature jump function serve as the unknown functions. Gauss integration rules are applied to solve the obtained equations numerically. Analysis of the stress intensity factors(SIFs) for some particular crack configurations is presented.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"35 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SINGULAR INTEGRAL EQUATIONS FOR A CRACK SUBJECTED NORMAL STRESS IN A HEATED PLATE\",\"authors\":\"S.K. Zhuang, N. N. Nik Long, K. Hamzah, N. Senu\",\"doi\":\"10.37418/amsj.13.3.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a crack in a heated plate is investigated, subjected to normal stress. Employing the relationship between the uniform and perturbation fields, as well as complex potential functions and stresses, the problems of heat conduction and heat stress are modeled as singular integral equations. The derivatives of the crack opening displacement function and the temperature jump function serve as the unknown functions. Gauss integration rules are applied to solve the obtained equations numerically. Analysis of the stress intensity factors(SIFs) for some particular crack configurations is presented.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"35 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.13.3.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.13.3.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了受热板在法向应力作用下的裂缝。利用均匀场和扰动场之间的关系以及复势函数和应力,将热传导和热应力问题模拟为奇异积分方程。裂缝开口位移函数和温度跃变函数的导数作为未知函数。应用高斯积分规则对得到的方程进行数值求解。对某些特定裂纹配置的应力强度因子(SIF)进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SINGULAR INTEGRAL EQUATIONS FOR A CRACK SUBJECTED NORMAL STRESS IN A HEATED PLATE
In this paper, a crack in a heated plate is investigated, subjected to normal stress. Employing the relationship between the uniform and perturbation fields, as well as complex potential functions and stresses, the problems of heat conduction and heat stress are modeled as singular integral equations. The derivatives of the crack opening displacement function and the temperature jump function serve as the unknown functions. Gauss integration rules are applied to solve the obtained equations numerically. Analysis of the stress intensity factors(SIFs) for some particular crack configurations is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信