{"title":"多兆瓦级和多兆焦耳级设施带来的基础物理学机会","authors":"Peter A Norreys","doi":"10.1016/j.hedp.2024.101129","DOIUrl":null,"url":null,"abstract":"<div><p>In this invited paper, I will touch on some highlights from my research career in the Clarendon Laboratory and in the Central Laser Facility, Rutherford Appleton Laboratory, obtained working in partnership with many outstanding international collaborators. These fall under the three broad themes. The first is novel laser-plasma interactions. The second theme is that of extreme field physics using multi-petawatt laser facilities. The third theme is that of inertial fusion studies. All of these studies indicate that an international, dual-use, 20-MJ Inertial Confinement Fusion (ICF)/Inertial Fusion Energy (IFE) facility, with the first 2-MJ at high repetition rate supplying single-shot high energy amplifiers, will open many new exciting avenues for both fundamental physics and high energy density science in the decades ahead.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"52 ","pages":"Article 101129"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574181824000545/pdfft?md5=d9a5d5a1e960ccf148e76c680df3879e&pid=1-s2.0-S1574181824000545-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fundamental physics opportunities with multi-petawatt- and multi-megaJoule-class facilities\",\"authors\":\"Peter A Norreys\",\"doi\":\"10.1016/j.hedp.2024.101129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this invited paper, I will touch on some highlights from my research career in the Clarendon Laboratory and in the Central Laser Facility, Rutherford Appleton Laboratory, obtained working in partnership with many outstanding international collaborators. These fall under the three broad themes. The first is novel laser-plasma interactions. The second theme is that of extreme field physics using multi-petawatt laser facilities. The third theme is that of inertial fusion studies. All of these studies indicate that an international, dual-use, 20-MJ Inertial Confinement Fusion (ICF)/Inertial Fusion Energy (IFE) facility, with the first 2-MJ at high repetition rate supplying single-shot high energy amplifiers, will open many new exciting avenues for both fundamental physics and high energy density science in the decades ahead.</p></div>\",\"PeriodicalId\":49267,\"journal\":{\"name\":\"High Energy Density Physics\",\"volume\":\"52 \",\"pages\":\"Article 101129\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1574181824000545/pdfft?md5=d9a5d5a1e960ccf148e76c680df3879e&pid=1-s2.0-S1574181824000545-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Energy Density Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574181824000545\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574181824000545","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Fundamental physics opportunities with multi-petawatt- and multi-megaJoule-class facilities
In this invited paper, I will touch on some highlights from my research career in the Clarendon Laboratory and in the Central Laser Facility, Rutherford Appleton Laboratory, obtained working in partnership with many outstanding international collaborators. These fall under the three broad themes. The first is novel laser-plasma interactions. The second theme is that of extreme field physics using multi-petawatt laser facilities. The third theme is that of inertial fusion studies. All of these studies indicate that an international, dual-use, 20-MJ Inertial Confinement Fusion (ICF)/Inertial Fusion Energy (IFE) facility, with the first 2-MJ at high repetition rate supplying single-shot high energy amplifiers, will open many new exciting avenues for both fundamental physics and high energy density science in the decades ahead.
期刊介绍:
High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings.
Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.