Giacomo Aletti , Irene Crimaldi , Andrea Ghiglietti
{"title":"强化随机过程网络:一阶渐近学的完整描述","authors":"Giacomo Aletti , Irene Crimaldi , Andrea Ghiglietti","doi":"10.1016/j.spa.2024.104427","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a finite collection of reinforced stochastic processes with a general network-based interaction among them. We provide <em>sufficient and necessary</em> conditions for the emergence of some form of <em>almost sure asymptotic synchronization</em>. Specifically, we identify three regimes: the first involves complete synchronization, where all processes converge towards the same random variable; the second exhibits almost sure convergence of the system, but no form of synchronization subsists; and the third reveals a scenario where there is almost sure asymptotic synchronization within the cyclic classes of the interaction matrix, together with an asymptotic periodic behavior among these classes.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"176 ","pages":"Article 104427"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Networks of reinforced stochastic processes: A complete description of the first-order asymptotics\",\"authors\":\"Giacomo Aletti , Irene Crimaldi , Andrea Ghiglietti\",\"doi\":\"10.1016/j.spa.2024.104427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a finite collection of reinforced stochastic processes with a general network-based interaction among them. We provide <em>sufficient and necessary</em> conditions for the emergence of some form of <em>almost sure asymptotic synchronization</em>. Specifically, we identify three regimes: the first involves complete synchronization, where all processes converge towards the same random variable; the second exhibits almost sure convergence of the system, but no form of synchronization subsists; and the third reveals a scenario where there is almost sure asymptotic synchronization within the cyclic classes of the interaction matrix, together with an asymptotic periodic behavior among these classes.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"176 \",\"pages\":\"Article 104427\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924001339\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924001339","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Networks of reinforced stochastic processes: A complete description of the first-order asymptotics
We consider a finite collection of reinforced stochastic processes with a general network-based interaction among them. We provide sufficient and necessary conditions for the emergence of some form of almost sure asymptotic synchronization. Specifically, we identify three regimes: the first involves complete synchronization, where all processes converge towards the same random variable; the second exhibits almost sure convergence of the system, but no form of synchronization subsists; and the third reveals a scenario where there is almost sure asymptotic synchronization within the cyclic classes of the interaction matrix, together with an asymptotic periodic behavior among these classes.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.