{"title":"具有体积-延迟关系的宏观基本图:模型推导、经验验证和不变性属性","authors":"","doi":"10.1016/j.trc.2024.104739","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a macroscopic fundamental diagram model with volume–delay relationship (MFD-VD) for road traffic networks, by exploring two new data sources: license plate cameras (LPCs) and road congestion indices (RCIs). We derive a first-order, nonlinear and implicit ordinary differential equation involving the network accumulation (the <em>volume</em>) and average congestion index (the <em>delay</em>), and use empirical data from a 266 km<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> urban network to fit an accumulation-based MFD with <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>></mo><mn>0</mn><mo>.</mo><mn>9</mn></mrow></math></span>. The issue of incomplete traffic volume observed by the LPCs is addressed with a theoretical derivation of the observability-invariant property: The ratio of traffic volume to the critical value (corresponding to the peak of the MFD) is independent of the (unknown) proportion of those detected vehicles. Conditions for such a property to hold are discussed in theory and verified empirically. This offers a practical way to estimate the ratio-to-critical-value, which is an important indicator of network saturation and efficiency, by simply working with a finite set of LPCs. The significance of our work is the introduction of two new data sources widely available to study empirical MFDs, as well as the removal of the assumptions of full observability, known detection rates, and spatially uniform sensors, which are typically required in conventional approaches based on loop detector and floating car data.</p></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macroscopic fundamental diagram with volume–delay relationship: Model derivation, empirical validation and invariance property\",\"authors\":\"\",\"doi\":\"10.1016/j.trc.2024.104739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a macroscopic fundamental diagram model with volume–delay relationship (MFD-VD) for road traffic networks, by exploring two new data sources: license plate cameras (LPCs) and road congestion indices (RCIs). We derive a first-order, nonlinear and implicit ordinary differential equation involving the network accumulation (the <em>volume</em>) and average congestion index (the <em>delay</em>), and use empirical data from a 266 km<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> urban network to fit an accumulation-based MFD with <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>></mo><mn>0</mn><mo>.</mo><mn>9</mn></mrow></math></span>. The issue of incomplete traffic volume observed by the LPCs is addressed with a theoretical derivation of the observability-invariant property: The ratio of traffic volume to the critical value (corresponding to the peak of the MFD) is independent of the (unknown) proportion of those detected vehicles. Conditions for such a property to hold are discussed in theory and verified empirically. This offers a practical way to estimate the ratio-to-critical-value, which is an important indicator of network saturation and efficiency, by simply working with a finite set of LPCs. The significance of our work is the introduction of two new data sources widely available to study empirical MFDs, as well as the removal of the assumptions of full observability, known detection rates, and spatially uniform sensors, which are typically required in conventional approaches based on loop detector and floating car data.</p></div>\",\"PeriodicalId\":54417,\"journal\":{\"name\":\"Transportation Research Part C-Emerging Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part C-Emerging Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968090X24002602\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24002602","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Macroscopic fundamental diagram with volume–delay relationship: Model derivation, empirical validation and invariance property
This paper presents a macroscopic fundamental diagram model with volume–delay relationship (MFD-VD) for road traffic networks, by exploring two new data sources: license plate cameras (LPCs) and road congestion indices (RCIs). We derive a first-order, nonlinear and implicit ordinary differential equation involving the network accumulation (the volume) and average congestion index (the delay), and use empirical data from a 266 km urban network to fit an accumulation-based MFD with . The issue of incomplete traffic volume observed by the LPCs is addressed with a theoretical derivation of the observability-invariant property: The ratio of traffic volume to the critical value (corresponding to the peak of the MFD) is independent of the (unknown) proportion of those detected vehicles. Conditions for such a property to hold are discussed in theory and verified empirically. This offers a practical way to estimate the ratio-to-critical-value, which is an important indicator of network saturation and efficiency, by simply working with a finite set of LPCs. The significance of our work is the introduction of two new data sources widely available to study empirical MFDs, as well as the removal of the assumptions of full observability, known detection rates, and spatially uniform sensors, which are typically required in conventional approaches based on loop detector and floating car data.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.