{"title":"技术说明:肿瘤治疗场疗法热管理方案的计算研究。","authors":"Xin Yang, Chunhua Hu, Luming Li","doi":"10.1002/mp.17296","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>The study focuses on thermal management in tumor-treating fields (TTFields) therapy, crucial for patient compliance and therapeutic effectiveness. TTFields therapy, an established treatment for glioblastoma, involves applying alternating electric fields to the brain. However, managing the thermal effects generated by electrodes is a major challenge, impacting patient comfort and treatment efficiency.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>This research aims to explore methods for controlling temperature increases during TTFields therapy without reducing its duty cycle. The study emphasizes optimizing electrode configurations and array arrangements to mitigate temperature rise, thereby maintaining therapy effectiveness and patient compliance.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Using a simplified multi-layer tissue model and finite element analysis, various electrode configurations and array shapes were tested in COMSOL Multiphysics v6.0. Adjustments included changing the electrode gel layer radius from 8 to 12 mm, electrode spacing, and transitioning to a more uniform array arrangement, such as a square array or a circular array.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The study revealed a strong correlation between high temperatures and edge current density distributions on electrodes. It was found that increasing the electrode gel layer's diameter, enlarging electrode spacing, and adopting a uniform array arrangement markedly mitigated temperature rises. By increasing the gel layer radius from the original 10 to 12 mm, a reduction in the peak temperature increases of approximately 0.3°C was observed. Changing the layout from rectangular to circular with the same area further reduced the peak temperature rise by 0.5°C. Additionally, enlarging the spacing between electrodes also contributed to temperature control. By integrating these strategies, we designed a new circular electrode array with an electrode spacing of 45 mm and a gel radius of 12 mm, successfully reducing the peak temperature from 42.1°C to 40.8°C, effectively achieving temperature control.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The research demonstrates that improving electrode and array configurations can effectively manage temperature in TTFields therapy without compromising treatment duration. This strategy is crucial as TTFields therapy relies on prolonged field exposure for effectiveness. The findings offer valuable insights into thermal management in electrode array design and could lead to enhanced patient compliance and treatment efficacy in TTFields therapy.</p>\n </section>\n </div>","PeriodicalId":18384,"journal":{"name":"Medical physics","volume":"51 10","pages":"7632-7644"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical note: Computational study on thermal management schemes for tumor-treating fields therapy\",\"authors\":\"Xin Yang, Chunhua Hu, Luming Li\",\"doi\":\"10.1002/mp.17296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>The study focuses on thermal management in tumor-treating fields (TTFields) therapy, crucial for patient compliance and therapeutic effectiveness. TTFields therapy, an established treatment for glioblastoma, involves applying alternating electric fields to the brain. However, managing the thermal effects generated by electrodes is a major challenge, impacting patient comfort and treatment efficiency.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Purpose</h3>\\n \\n <p>This research aims to explore methods for controlling temperature increases during TTFields therapy without reducing its duty cycle. The study emphasizes optimizing electrode configurations and array arrangements to mitigate temperature rise, thereby maintaining therapy effectiveness and patient compliance.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Using a simplified multi-layer tissue model and finite element analysis, various electrode configurations and array shapes were tested in COMSOL Multiphysics v6.0. Adjustments included changing the electrode gel layer radius from 8 to 12 mm, electrode spacing, and transitioning to a more uniform array arrangement, such as a square array or a circular array.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The study revealed a strong correlation between high temperatures and edge current density distributions on electrodes. It was found that increasing the electrode gel layer's diameter, enlarging electrode spacing, and adopting a uniform array arrangement markedly mitigated temperature rises. By increasing the gel layer radius from the original 10 to 12 mm, a reduction in the peak temperature increases of approximately 0.3°C was observed. Changing the layout from rectangular to circular with the same area further reduced the peak temperature rise by 0.5°C. Additionally, enlarging the spacing between electrodes also contributed to temperature control. By integrating these strategies, we designed a new circular electrode array with an electrode spacing of 45 mm and a gel radius of 12 mm, successfully reducing the peak temperature from 42.1°C to 40.8°C, effectively achieving temperature control.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The research demonstrates that improving electrode and array configurations can effectively manage temperature in TTFields therapy without compromising treatment duration. This strategy is crucial as TTFields therapy relies on prolonged field exposure for effectiveness. The findings offer valuable insights into thermal management in electrode array design and could lead to enhanced patient compliance and treatment efficacy in TTFields therapy.</p>\\n </section>\\n </div>\",\"PeriodicalId\":18384,\"journal\":{\"name\":\"Medical physics\",\"volume\":\"51 10\",\"pages\":\"7632-7644\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mp.17296\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mp.17296","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Technical note: Computational study on thermal management schemes for tumor-treating fields therapy
Background
The study focuses on thermal management in tumor-treating fields (TTFields) therapy, crucial for patient compliance and therapeutic effectiveness. TTFields therapy, an established treatment for glioblastoma, involves applying alternating electric fields to the brain. However, managing the thermal effects generated by electrodes is a major challenge, impacting patient comfort and treatment efficiency.
Purpose
This research aims to explore methods for controlling temperature increases during TTFields therapy without reducing its duty cycle. The study emphasizes optimizing electrode configurations and array arrangements to mitigate temperature rise, thereby maintaining therapy effectiveness and patient compliance.
Methods
Using a simplified multi-layer tissue model and finite element analysis, various electrode configurations and array shapes were tested in COMSOL Multiphysics v6.0. Adjustments included changing the electrode gel layer radius from 8 to 12 mm, electrode spacing, and transitioning to a more uniform array arrangement, such as a square array or a circular array.
Results
The study revealed a strong correlation between high temperatures and edge current density distributions on electrodes. It was found that increasing the electrode gel layer's diameter, enlarging electrode spacing, and adopting a uniform array arrangement markedly mitigated temperature rises. By increasing the gel layer radius from the original 10 to 12 mm, a reduction in the peak temperature increases of approximately 0.3°C was observed. Changing the layout from rectangular to circular with the same area further reduced the peak temperature rise by 0.5°C. Additionally, enlarging the spacing between electrodes also contributed to temperature control. By integrating these strategies, we designed a new circular electrode array with an electrode spacing of 45 mm and a gel radius of 12 mm, successfully reducing the peak temperature from 42.1°C to 40.8°C, effectively achieving temperature control.
Conclusions
The research demonstrates that improving electrode and array configurations can effectively manage temperature in TTFields therapy without compromising treatment duration. This strategy is crucial as TTFields therapy relies on prolonged field exposure for effectiveness. The findings offer valuable insights into thermal management in electrode array design and could lead to enhanced patient compliance and treatment efficacy in TTFields therapy.
期刊介绍:
Medical Physics publishes original, high impact physics, imaging science, and engineering research that advances patient diagnosis and therapy through contributions in 1) Basic science developments with high potential for clinical translation 2) Clinical applications of cutting edge engineering and physics innovations 3) Broadly applicable and innovative clinical physics developments
Medical Physics is a journal of global scope and reach. By publishing in Medical Physics your research will reach an international, multidisciplinary audience including practicing medical physicists as well as physics- and engineering based translational scientists. We work closely with authors of promising articles to improve their quality.