CELL-E 2:利用双向文字图像转换器将蛋白质翻译成图片并返回。

Emaad Khwaja, Yun S Song, Aaron Agarunov, Bo Huang
{"title":"CELL-E 2:利用双向文字图像转换器将蛋白质翻译成图片并返回。","authors":"Emaad Khwaja, Yun S Song, Aaron Agarunov, Bo Huang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We present CELL-E 2, a novel bidirectional transformer that can generate images depicting protein subcellular localization from the amino acid sequences (and <i>vice versa</i>). Protein localization is a challenging problem that requires integrating sequence and image information, which most existing methods ignore. CELL-E 2 extends the work of CELL-E, not only capturing the spatial complexity of protein localization and produce probability estimates of localization atop a nucleus image, but also being able to generate sequences from images, enabling <i>de novo</i> protein design. We train and finetune CELL-E 2 on two large-scale datasets of human proteins. We also demonstrate how to use CELL-E 2 to create hundreds of novel nuclear localization signals (NLS). Results and interactive demos are featured at https://bohuanglab.github.io/CELL-E_2/.</p>","PeriodicalId":72099,"journal":{"name":"Advances in neural information processing systems","volume":"36 ","pages":"4899-4914"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254339/pdf/","citationCount":"0","resultStr":"{\"title\":\"CELL-E 2: Translating Proteins to Pictures and Back with a Bidirectional Text-to-Image Transformer.\",\"authors\":\"Emaad Khwaja, Yun S Song, Aaron Agarunov, Bo Huang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present CELL-E 2, a novel bidirectional transformer that can generate images depicting protein subcellular localization from the amino acid sequences (and <i>vice versa</i>). Protein localization is a challenging problem that requires integrating sequence and image information, which most existing methods ignore. CELL-E 2 extends the work of CELL-E, not only capturing the spatial complexity of protein localization and produce probability estimates of localization atop a nucleus image, but also being able to generate sequences from images, enabling <i>de novo</i> protein design. We train and finetune CELL-E 2 on two large-scale datasets of human proteins. We also demonstrate how to use CELL-E 2 to create hundreds of novel nuclear localization signals (NLS). Results and interactive demos are featured at https://bohuanglab.github.io/CELL-E_2/.</p>\",\"PeriodicalId\":72099,\"journal\":{\"name\":\"Advances in neural information processing systems\",\"volume\":\"36 \",\"pages\":\"4899-4914\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254339/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neural information processing systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neural information processing systems","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍的 CELL-E 2 是一种新颖的双向转换器,可以根据氨基酸序列生成描述蛋白质亚细胞定位的图像(反之亦然)。蛋白质定位是一个具有挑战性的问题,需要整合序列和图像信息,而大多数现有方法都忽略了这一点。CELL-E 2扩展了CELL-E的工作,不仅能捕捉蛋白质定位的空间复杂性并在细胞核图像上生成定位的概率估计,还能从图像生成序列,从而实现全新的蛋白质设计。我们在两个大规模人类蛋白质数据集上对CELL-E 2进行了训练和微调。我们还演示了如何使用 CELL-E 2 创建数百个新型核定位信号(NLS)。结果和互动演示将在 https://bohuanglab.github.io/CELL-E_2/ 上展示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CELL-E 2: Translating Proteins to Pictures and Back with a Bidirectional Text-to-Image Transformer.

We present CELL-E 2, a novel bidirectional transformer that can generate images depicting protein subcellular localization from the amino acid sequences (and vice versa). Protein localization is a challenging problem that requires integrating sequence and image information, which most existing methods ignore. CELL-E 2 extends the work of CELL-E, not only capturing the spatial complexity of protein localization and produce probability estimates of localization atop a nucleus image, but also being able to generate sequences from images, enabling de novo protein design. We train and finetune CELL-E 2 on two large-scale datasets of human proteins. We also demonstrate how to use CELL-E 2 to create hundreds of novel nuclear localization signals (NLS). Results and interactive demos are featured at https://bohuanglab.github.io/CELL-E_2/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信