Carmen Larisa Nicolae, Diana Cristina Pîrvulescu, Alexandru Mihai Antohi, Adelina Gabriela Niculescu, Alexandru Mihai Grumezescu, George Alexandru Croitoru
{"title":"硅纳米粒子在医学中的应用:通过先进的给药、诊断和治疗策略克服病症。","authors":"Carmen Larisa Nicolae, Diana Cristina Pîrvulescu, Alexandru Mihai Antohi, Adelina Gabriela Niculescu, Alexandru Mihai Grumezescu, George Alexandru Croitoru","doi":"10.47162/RJME.65.2.03","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last decades, silica nanoparticles (SiNPs) have been studied for their applications in biomedicine as an alternative used for conventional diagnostics and treatments. Since their properties can be modified and adjusted for the desired use, they have many different potential applications in medicine: they can be used in diagnosis because of their ability to be loaded with dyes and their increased selectivity and sensitivity, which can improve the quality of the diagnostic process. SiNPs can be functionalized by targeting ligands or molecules to detect certain cellular processes or biomarkers with better precision. Targeted delivery is another fundamental use of SiNPs. They could be used as drug delivery systems (DDS) since their structure allows the loading of therapeutic agents or other compounds, and studies have demonstrated their biocompatibility. When SiNPs are used as DDS, the drug's toxicity and the off-target effects are reduced significantly, and they can be used to treat conditions like cancer and neurological diseases and even aid in regenerative processes, such as wound healing or bone repair. However, safety concerns must be considered before SiNPs can be used extensively in clinical practice because NPs can cause toxicity in certain conditions and accumulate at undesired locations. Therefore, an overview of the potential applications that SiNPs could have in medicine, as well as their safety concerns, will be covered in this review paper.</p>","PeriodicalId":54447,"journal":{"name":"Romanian Journal of Morphology and Embryology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384868/pdf/","citationCount":"0","resultStr":"{\"title\":\"Silica nanoparticles in medicine: overcoming pathologies through advanced drug delivery, diagnostics, and therapeutic strategies.\",\"authors\":\"Carmen Larisa Nicolae, Diana Cristina Pîrvulescu, Alexandru Mihai Antohi, Adelina Gabriela Niculescu, Alexandru Mihai Grumezescu, George Alexandru Croitoru\",\"doi\":\"10.47162/RJME.65.2.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the last decades, silica nanoparticles (SiNPs) have been studied for their applications in biomedicine as an alternative used for conventional diagnostics and treatments. Since their properties can be modified and adjusted for the desired use, they have many different potential applications in medicine: they can be used in diagnosis because of their ability to be loaded with dyes and their increased selectivity and sensitivity, which can improve the quality of the diagnostic process. SiNPs can be functionalized by targeting ligands or molecules to detect certain cellular processes or biomarkers with better precision. Targeted delivery is another fundamental use of SiNPs. They could be used as drug delivery systems (DDS) since their structure allows the loading of therapeutic agents or other compounds, and studies have demonstrated their biocompatibility. When SiNPs are used as DDS, the drug's toxicity and the off-target effects are reduced significantly, and they can be used to treat conditions like cancer and neurological diseases and even aid in regenerative processes, such as wound healing or bone repair. However, safety concerns must be considered before SiNPs can be used extensively in clinical practice because NPs can cause toxicity in certain conditions and accumulate at undesired locations. Therefore, an overview of the potential applications that SiNPs could have in medicine, as well as their safety concerns, will be covered in this review paper.</p>\",\"PeriodicalId\":54447,\"journal\":{\"name\":\"Romanian Journal of Morphology and Embryology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384868/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Romanian Journal of Morphology and Embryology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.47162/RJME.65.2.03\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Romanian Journal of Morphology and Embryology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.47162/RJME.65.2.03","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Silica nanoparticles in medicine: overcoming pathologies through advanced drug delivery, diagnostics, and therapeutic strategies.
Over the last decades, silica nanoparticles (SiNPs) have been studied for their applications in biomedicine as an alternative used for conventional diagnostics and treatments. Since their properties can be modified and adjusted for the desired use, they have many different potential applications in medicine: they can be used in diagnosis because of their ability to be loaded with dyes and their increased selectivity and sensitivity, which can improve the quality of the diagnostic process. SiNPs can be functionalized by targeting ligands or molecules to detect certain cellular processes or biomarkers with better precision. Targeted delivery is another fundamental use of SiNPs. They could be used as drug delivery systems (DDS) since their structure allows the loading of therapeutic agents or other compounds, and studies have demonstrated their biocompatibility. When SiNPs are used as DDS, the drug's toxicity and the off-target effects are reduced significantly, and they can be used to treat conditions like cancer and neurological diseases and even aid in regenerative processes, such as wound healing or bone repair. However, safety concerns must be considered before SiNPs can be used extensively in clinical practice because NPs can cause toxicity in certain conditions and accumulate at undesired locations. Therefore, an overview of the potential applications that SiNPs could have in medicine, as well as their safety concerns, will be covered in this review paper.
期刊介绍:
Romanian Journal of Morphology and Embryology (Rom J Morphol Embryol) publishes studies on all aspects of normal morphology and human comparative and experimental pathology. The Journal accepts only researches that utilize modern investigation methods (studies of anatomy, pathology, cytopathology, immunohistochemistry, histochemistry, immunology, morphometry, molecular and cellular biology, electronic microscopy, etc.).