Lekang Yin, Cheng Yan, Weifeng Guo, Chun Yang, Hao Dong, Yang Zhang, Shijie Xu, Mengsu Zeng
{"title":"使用冠状动脉计算机断层扫描(CT)血管成像的急性心肌炎患者临床特征与心外膜脂肪组织特征之间的相关性:一项回顾性数据收集的病例对照研究。","authors":"Lekang Yin, Cheng Yan, Weifeng Guo, Chun Yang, Hao Dong, Yang Zhang, Shijie Xu, Mengsu Zeng","doi":"10.21037/qims-23-1407","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Epicardial adipose tissue (EAT) is unique type of visceral adipose tissue, sharing the same microcirculation with myocardium. This study aimed to assess the imaging features of EAT in patients with acute myocarditis (AM) and explore the relationships with clinical characteristics.</p><p><strong>Methods: </strong>For this retrospective case-control study, totally 38 AM patients and 52 controls were screened retrospectively from January 2019 to December 2022, and the EAT volume was measured from coronary computed tomography (CT) angiography imaging. Histogram analysis was performed to calculate parameters like the mean, standard deviation, interquartile range and percentiles of EAT attenuation. Whether EAT features change was assessed when clinical characteristics including symptoms, T wave abnormalities, pericardial effusion (PE), impairment of systolic function, and the need for intensive care presented.</p><p><strong>Results: </strong>The EAT volume (75.2±22.8 mL) and mean EAT attenuation [-75.8±4.4 Hounsfield units (HU)] of the AM group was significantly larger than the control group (64.7±26.0 mL, P=0.049; -77.9±5.0 HU, P=0.044). Among the clinical characteristics, only the presence of PE was associated with changes in EAT features. Patients with PE showed significantly changes in EAT attenuation including mean attenuation [analysis of variance (ANOVA) P=0.001] and quantitative histogram parameters. The mean attenuation of patients with PE (-71.9±4.0 HU) was significantly larger than controls (-77.9±5.0 HU, Bonferroni corrected P<0.001) and patients without PE (-77.4±3.5 HU, Bonferroni corrected P=0.003). Observed in histogram, the overall increase in EAT attenuation could lead to decrease in EAT volume, which resulted in no statistically significant difference in EAT volume between the AM patients with PE and controls (64.7±26.0 <i>vs.</i> 72.2±28.3 mL, Bonferroni corrected P>0.99).</p><p><strong>Conclusions: </strong>Compared to controls, EAT volume was significantly larger in AM, and EAT attenuation increased notably in the presence of PE. We recommend evaluating EAT volume and attenuation simultaneously when quantifying EAT using CT attenuation thresholds.</p>","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250336/pdf/","citationCount":"0","resultStr":"{\"title\":\"Correlation between clinical characteristics and epicardial adipose tissue features in acute myocarditis patients using coronary computed tomography (CT) vascular imaging: a case-control study with retrospective data collection.\",\"authors\":\"Lekang Yin, Cheng Yan, Weifeng Guo, Chun Yang, Hao Dong, Yang Zhang, Shijie Xu, Mengsu Zeng\",\"doi\":\"10.21037/qims-23-1407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Epicardial adipose tissue (EAT) is unique type of visceral adipose tissue, sharing the same microcirculation with myocardium. This study aimed to assess the imaging features of EAT in patients with acute myocarditis (AM) and explore the relationships with clinical characteristics.</p><p><strong>Methods: </strong>For this retrospective case-control study, totally 38 AM patients and 52 controls were screened retrospectively from January 2019 to December 2022, and the EAT volume was measured from coronary computed tomography (CT) angiography imaging. Histogram analysis was performed to calculate parameters like the mean, standard deviation, interquartile range and percentiles of EAT attenuation. Whether EAT features change was assessed when clinical characteristics including symptoms, T wave abnormalities, pericardial effusion (PE), impairment of systolic function, and the need for intensive care presented.</p><p><strong>Results: </strong>The EAT volume (75.2±22.8 mL) and mean EAT attenuation [-75.8±4.4 Hounsfield units (HU)] of the AM group was significantly larger than the control group (64.7±26.0 mL, P=0.049; -77.9±5.0 HU, P=0.044). Among the clinical characteristics, only the presence of PE was associated with changes in EAT features. Patients with PE showed significantly changes in EAT attenuation including mean attenuation [analysis of variance (ANOVA) P=0.001] and quantitative histogram parameters. The mean attenuation of patients with PE (-71.9±4.0 HU) was significantly larger than controls (-77.9±5.0 HU, Bonferroni corrected P<0.001) and patients without PE (-77.4±3.5 HU, Bonferroni corrected P=0.003). Observed in histogram, the overall increase in EAT attenuation could lead to decrease in EAT volume, which resulted in no statistically significant difference in EAT volume between the AM patients with PE and controls (64.7±26.0 <i>vs.</i> 72.2±28.3 mL, Bonferroni corrected P>0.99).</p><p><strong>Conclusions: </strong>Compared to controls, EAT volume was significantly larger in AM, and EAT attenuation increased notably in the presence of PE. We recommend evaluating EAT volume and attenuation simultaneously when quantifying EAT using CT attenuation thresholds.</p>\",\"PeriodicalId\":54267,\"journal\":{\"name\":\"Quantitative Imaging in Medicine and Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250336/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Imaging in Medicine and Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/qims-23-1407\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Imaging in Medicine and Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/qims-23-1407","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Correlation between clinical characteristics and epicardial adipose tissue features in acute myocarditis patients using coronary computed tomography (CT) vascular imaging: a case-control study with retrospective data collection.
Background: Epicardial adipose tissue (EAT) is unique type of visceral adipose tissue, sharing the same microcirculation with myocardium. This study aimed to assess the imaging features of EAT in patients with acute myocarditis (AM) and explore the relationships with clinical characteristics.
Methods: For this retrospective case-control study, totally 38 AM patients and 52 controls were screened retrospectively from January 2019 to December 2022, and the EAT volume was measured from coronary computed tomography (CT) angiography imaging. Histogram analysis was performed to calculate parameters like the mean, standard deviation, interquartile range and percentiles of EAT attenuation. Whether EAT features change was assessed when clinical characteristics including symptoms, T wave abnormalities, pericardial effusion (PE), impairment of systolic function, and the need for intensive care presented.
Results: The EAT volume (75.2±22.8 mL) and mean EAT attenuation [-75.8±4.4 Hounsfield units (HU)] of the AM group was significantly larger than the control group (64.7±26.0 mL, P=0.049; -77.9±5.0 HU, P=0.044). Among the clinical characteristics, only the presence of PE was associated with changes in EAT features. Patients with PE showed significantly changes in EAT attenuation including mean attenuation [analysis of variance (ANOVA) P=0.001] and quantitative histogram parameters. The mean attenuation of patients with PE (-71.9±4.0 HU) was significantly larger than controls (-77.9±5.0 HU, Bonferroni corrected P<0.001) and patients without PE (-77.4±3.5 HU, Bonferroni corrected P=0.003). Observed in histogram, the overall increase in EAT attenuation could lead to decrease in EAT volume, which resulted in no statistically significant difference in EAT volume between the AM patients with PE and controls (64.7±26.0 vs. 72.2±28.3 mL, Bonferroni corrected P>0.99).
Conclusions: Compared to controls, EAT volume was significantly larger in AM, and EAT attenuation increased notably in the presence of PE. We recommend evaluating EAT volume and attenuation simultaneously when quantifying EAT using CT attenuation thresholds.