孤子气体:理论、数值和实验。

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Pierre Suret, Stephane Randoux, Andrey Gelash, Dmitry Agafontsev, Benjamin Doyon, Gennady El
{"title":"孤子气体:理论、数值和实验。","authors":"Pierre Suret, Stephane Randoux, Andrey Gelash, Dmitry Agafontsev, Benjamin Doyon, Gennady El","doi":"10.1103/PhysRevE.109.061001","DOIUrl":null,"url":null,"abstract":"<p><p>The concept of soliton gas was introduced in 1971 by Zakharov as an infinite collection of weakly interacting solitons in the framework of Korteweg-de Vries (KdV) equation. In this theoretical construction of a diluted (rarefied) soliton gas, solitons with random amplitude and phase parameters are almost nonoverlapping. More recently, the concept has been extended to dense gases in which solitons strongly and continuously interact. The notion of soliton gas is inherently associated with integrable wave systems described by nonlinear partial differential equations like the KdV equation or the one-dimensional nonlinear Schrödinger equation that can be solved using the inverse scattering transform. Over the last few years, the field of soliton gases has received a rapidly growing interest from both the theoretical and experimental points of view. In particular, it has been realized that the soliton gas dynamics underlies some fundamental nonlinear wave phenomena such as spontaneous modulation instability and the formation of rogue waves. The recently discovered deep connections of soliton gas theory with generalized hydrodynamics have broadened the field and opened new fundamental questions related to the soliton gas statistics and thermodynamics. We review the main recent theoretical and experimental results in the field of soliton gas. The key conceptual tools of the field, such as the inverse scattering transform, the thermodynamic limit of finite-gap potentials, and generalized Gibbs ensembles are introduced and various open questions and future challenges are discussed.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soliton gas: Theory, numerics, and experiments.\",\"authors\":\"Pierre Suret, Stephane Randoux, Andrey Gelash, Dmitry Agafontsev, Benjamin Doyon, Gennady El\",\"doi\":\"10.1103/PhysRevE.109.061001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The concept of soliton gas was introduced in 1971 by Zakharov as an infinite collection of weakly interacting solitons in the framework of Korteweg-de Vries (KdV) equation. In this theoretical construction of a diluted (rarefied) soliton gas, solitons with random amplitude and phase parameters are almost nonoverlapping. More recently, the concept has been extended to dense gases in which solitons strongly and continuously interact. The notion of soliton gas is inherently associated with integrable wave systems described by nonlinear partial differential equations like the KdV equation or the one-dimensional nonlinear Schrödinger equation that can be solved using the inverse scattering transform. Over the last few years, the field of soliton gases has received a rapidly growing interest from both the theoretical and experimental points of view. In particular, it has been realized that the soliton gas dynamics underlies some fundamental nonlinear wave phenomena such as spontaneous modulation instability and the formation of rogue waves. The recently discovered deep connections of soliton gas theory with generalized hydrodynamics have broadened the field and opened new fundamental questions related to the soliton gas statistics and thermodynamics. We review the main recent theoretical and experimental results in the field of soliton gas. The key conceptual tools of the field, such as the inverse scattering transform, the thermodynamic limit of finite-gap potentials, and generalized Gibbs ensembles are introduced and various open questions and future challenges are discussed.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.109.061001\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.109.061001","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

孤子气的概念由扎哈罗夫于 1971 年提出,是在 Korteweg-de Vries(KdV)方程框架内弱相互作用孤子的无限集合。在这种稀释(稀薄)孤子气体的理论构造中,具有随机振幅和相位参数的孤子几乎不重叠。最近,这一概念被扩展到稠密气体中,在稠密气体中,孤子会发生强烈而持续的相互作用。孤子气体的概念本质上与非线性偏微分方程(如 KdV 方程或一维非线性薛定谔方程)所描述的可积分波系统相关联,而这些非线性偏微分方程可以使用反散射变换来求解。在过去几年中,孤子气体领域在理论和实验方面都受到了越来越多的关注。人们尤其认识到,孤子气体动力学是一些基本非线性波现象的基础,如自发调制不稳定性和流氓波的形成。最近发现的孤子气体理论与广义流体力学的深层联系拓宽了这一领域,并提出了与孤子气体统计和热力学有关的新的基本问题。我们回顾了孤子气体领域最新的主要理论和实验成果。介绍了该领域的关键概念工具,如反散射变换、有限间隙势的热力学极限和广义吉布斯集合,并讨论了各种开放问题和未来挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soliton gas: Theory, numerics, and experiments.

The concept of soliton gas was introduced in 1971 by Zakharov as an infinite collection of weakly interacting solitons in the framework of Korteweg-de Vries (KdV) equation. In this theoretical construction of a diluted (rarefied) soliton gas, solitons with random amplitude and phase parameters are almost nonoverlapping. More recently, the concept has been extended to dense gases in which solitons strongly and continuously interact. The notion of soliton gas is inherently associated with integrable wave systems described by nonlinear partial differential equations like the KdV equation or the one-dimensional nonlinear Schrödinger equation that can be solved using the inverse scattering transform. Over the last few years, the field of soliton gases has received a rapidly growing interest from both the theoretical and experimental points of view. In particular, it has been realized that the soliton gas dynamics underlies some fundamental nonlinear wave phenomena such as spontaneous modulation instability and the formation of rogue waves. The recently discovered deep connections of soliton gas theory with generalized hydrodynamics have broadened the field and opened new fundamental questions related to the soliton gas statistics and thermodynamics. We review the main recent theoretical and experimental results in the field of soliton gas. The key conceptual tools of the field, such as the inverse scattering transform, the thermodynamic limit of finite-gap potentials, and generalized Gibbs ensembles are introduced and various open questions and future challenges are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信