用于定量描述实验观察到的胶体动力学的重比例模式耦合方案。

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Joel Diaz Maier, Joachim Wagner
{"title":"用于定量描述实验观察到的胶体动力学的重比例模式耦合方案。","authors":"Joel Diaz Maier, Joachim Wagner","doi":"10.1103/PhysRevE.109.064605","DOIUrl":null,"url":null,"abstract":"<p><p>We describe experimentally observed collective dynamics in colloidal suspensions of model hard-sphere particles using a modified mode coupling theory (MCT). This rescaled MCT is capable of describing quantitatively the wave-vector and time-dependent diffusion in these systems. Intermediate scattering functions of liquidlike structured dispersions are determined by means of static and dynamic light-scattering experiments. The structure and short-time dynamics of the systems can be described quantitatively employing a multicomponent Percus-Yevick ansatz for the partial structure factors and an effective, one-component description of hydrodynamic interactions based on the semianalytical δγ expansion. Combined with a recently proposed empirical modification of MCT in which memory functions are calculated using effective structure factors at rescaled number densities, the scheme is able to model the collective dynamics over the entire accessible time and wave-vector range and predicts the volume-fraction-dependence of long-time self-diffusion coefficients and the zero-shear viscosity quantitatively. This highlights the potential of MCT as a practical tool for the quantitative analysis and prediction of experimental observations.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rescaled mode-coupling scheme for the quantitative description of experimentally observed colloid dynamics.\",\"authors\":\"Joel Diaz Maier, Joachim Wagner\",\"doi\":\"10.1103/PhysRevE.109.064605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We describe experimentally observed collective dynamics in colloidal suspensions of model hard-sphere particles using a modified mode coupling theory (MCT). This rescaled MCT is capable of describing quantitatively the wave-vector and time-dependent diffusion in these systems. Intermediate scattering functions of liquidlike structured dispersions are determined by means of static and dynamic light-scattering experiments. The structure and short-time dynamics of the systems can be described quantitatively employing a multicomponent Percus-Yevick ansatz for the partial structure factors and an effective, one-component description of hydrodynamic interactions based on the semianalytical δγ expansion. Combined with a recently proposed empirical modification of MCT in which memory functions are calculated using effective structure factors at rescaled number densities, the scheme is able to model the collective dynamics over the entire accessible time and wave-vector range and predicts the volume-fraction-dependence of long-time self-diffusion coefficients and the zero-shear viscosity quantitatively. This highlights the potential of MCT as a practical tool for the quantitative analysis and prediction of experimental observations.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.109.064605\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.109.064605","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

我们使用修正的模式耦合理论(MCT)描述了实验观察到的模型硬球粒子胶体悬浮液中的集体动力学。这种改进的 MCT 能够定量描述这些系统中的波矢量和随时间变化的扩散。通过静态和动态光散射实验确定了液态结构分散体的中间散射函数。利用部分结构因子的多分量珀尔库斯-耶维克公式和基于半解析δγ扩展的流体动力学相互作用的有效单分量描述,可以定量描述系统的结构和短时动力学。该方案与最近提出的 MCT 经验修正相结合,即在重新标定的数量密度下使用有效结构因子计算记忆功能,能够模拟整个可访问时间和波矢量范围内的集体动力学,并定量预测长时间自扩散系数和零剪切粘度的体积分数依赖性。这凸显了 MCT 作为定量分析和预测实验观测结果的实用工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rescaled mode-coupling scheme for the quantitative description of experimentally observed colloid dynamics.

We describe experimentally observed collective dynamics in colloidal suspensions of model hard-sphere particles using a modified mode coupling theory (MCT). This rescaled MCT is capable of describing quantitatively the wave-vector and time-dependent diffusion in these systems. Intermediate scattering functions of liquidlike structured dispersions are determined by means of static and dynamic light-scattering experiments. The structure and short-time dynamics of the systems can be described quantitatively employing a multicomponent Percus-Yevick ansatz for the partial structure factors and an effective, one-component description of hydrodynamic interactions based on the semianalytical δγ expansion. Combined with a recently proposed empirical modification of MCT in which memory functions are calculated using effective structure factors at rescaled number densities, the scheme is able to model the collective dynamics over the entire accessible time and wave-vector range and predicts the volume-fraction-dependence of long-time self-diffusion coefficients and the zero-shear viscosity quantitatively. This highlights the potential of MCT as a practical tool for the quantitative analysis and prediction of experimental observations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信