发展科学环境统计研究框架。

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Nicole Walasek, Ethan S Young, Willem E Frankenhuis
{"title":"发展科学环境统计研究框架。","authors":"Nicole Walasek, Ethan S Young, Willem E Frankenhuis","doi":"10.1037/met0000651","DOIUrl":null,"url":null,"abstract":"<p><p>Psychologists tend to rely on verbal descriptions of the environment over time, using terms like \"unpredictable,\" \"variable,\" and \"unstable.\" These terms are often open to different interpretations. This ambiguity blurs the match between constructs and measures, which creates confusion and inconsistency across studies. To better characterize the environment, the field needs a shared framework that organizes descriptions of the environment over time in clear terms: as statistical definitions. Here, we first present such a framework, drawing on theory developed in other disciplines, such as biology, anthropology, ecology, and economics. Then we apply our framework by quantifying \"unpredictability\" in a publicly available, longitudinal data set of crime rates in New York City (NYC) across 15 years. This case study shows that the correlations between different \"unpredictability statistics\" across regions are only moderate. This means that regions within NYC rank differently on unpredictability depending on which definition is used and at which spatial scale the statistics are computed. Additionally, we explore associations between unpredictability statistics and measures of unemployment, poverty, and educational attainment derived from publicly available NYC survey data. In our case study, these measures are associated with mean levels in crime rates but hardly with unpredictability in crime rates. Our case study illustrates the merits of using a formal framework for disentangling different properties of the environment. To facilitate the use of our framework, we provide a friendly, step-by-step guide for identifying the structure of the environment in repeated measures data sets. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework for studying environmental statistics in developmental science.\",\"authors\":\"Nicole Walasek, Ethan S Young, Willem E Frankenhuis\",\"doi\":\"10.1037/met0000651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Psychologists tend to rely on verbal descriptions of the environment over time, using terms like \\\"unpredictable,\\\" \\\"variable,\\\" and \\\"unstable.\\\" These terms are often open to different interpretations. This ambiguity blurs the match between constructs and measures, which creates confusion and inconsistency across studies. To better characterize the environment, the field needs a shared framework that organizes descriptions of the environment over time in clear terms: as statistical definitions. Here, we first present such a framework, drawing on theory developed in other disciplines, such as biology, anthropology, ecology, and economics. Then we apply our framework by quantifying \\\"unpredictability\\\" in a publicly available, longitudinal data set of crime rates in New York City (NYC) across 15 years. This case study shows that the correlations between different \\\"unpredictability statistics\\\" across regions are only moderate. This means that regions within NYC rank differently on unpredictability depending on which definition is used and at which spatial scale the statistics are computed. Additionally, we explore associations between unpredictability statistics and measures of unemployment, poverty, and educational attainment derived from publicly available NYC survey data. In our case study, these measures are associated with mean levels in crime rates but hardly with unpredictability in crime rates. Our case study illustrates the merits of using a formal framework for disentangling different properties of the environment. To facilitate the use of our framework, we provide a friendly, step-by-step guide for identifying the structure of the environment in repeated measures data sets. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000651\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000651","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

心理学家倾向于使用 "不可预测"、"多变 "和 "不稳定 "等术语来依赖对环境随时间变化的口头描述。这些术语通常可以有不同的解释。这种模糊性模糊了建构与测量之间的匹配,造成了研究的混乱和不一致。为了更好地描述环境特征,该领域需要一个共享框架,以清晰的术语(即统计定义)组织对环境随时间变化的描述。在此,我们首先借鉴生物学、人类学、生态学和经济学等其他学科的理论,提出了这样一个框架。然后,我们通过量化纽约市(NYC)15 年犯罪率的公开纵向数据集中的 "不可预测性 "来应用我们的框架。这项案例研究表明,不同地区之间不同的 "不可预测性统计 "之间的相关性并不高。这意味着,纽约市内各地区在不可预测性方面的排名有所不同,这取决于使用的定义和计算统计数据的空间尺度。此外,我们还探讨了不可预测性统计数据与纽约市公开调查数据中的失业率、贫困率和受教育程度之间的关联。在我们的案例研究中,这些指标与犯罪率的平均水平相关,但与犯罪率的不可预测性几乎无关。我们的案例研究说明了使用正式框架来区分环境不同属性的优点。为了方便使用我们的框架,我们提供了一份友好的分步指南,用于识别重复测量数据集中的环境结构。(PsycInfo Database Record (c) 2024 APA,保留所有权利)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A framework for studying environmental statistics in developmental science.

Psychologists tend to rely on verbal descriptions of the environment over time, using terms like "unpredictable," "variable," and "unstable." These terms are often open to different interpretations. This ambiguity blurs the match between constructs and measures, which creates confusion and inconsistency across studies. To better characterize the environment, the field needs a shared framework that organizes descriptions of the environment over time in clear terms: as statistical definitions. Here, we first present such a framework, drawing on theory developed in other disciplines, such as biology, anthropology, ecology, and economics. Then we apply our framework by quantifying "unpredictability" in a publicly available, longitudinal data set of crime rates in New York City (NYC) across 15 years. This case study shows that the correlations between different "unpredictability statistics" across regions are only moderate. This means that regions within NYC rank differently on unpredictability depending on which definition is used and at which spatial scale the statistics are computed. Additionally, we explore associations between unpredictability statistics and measures of unemployment, poverty, and educational attainment derived from publicly available NYC survey data. In our case study, these measures are associated with mean levels in crime rates but hardly with unpredictability in crime rates. Our case study illustrates the merits of using a formal framework for disentangling different properties of the environment. To facilitate the use of our framework, we provide a friendly, step-by-step guide for identifying the structure of the environment in repeated measures data sets. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信