微流体压缩后单细胞 Lamin-A 结构组织的计算模型。

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Maria Isabella Maremonti, Filippo Causa
{"title":"微流体压缩后单细胞 Lamin-A 结构组织的计算模型。","authors":"Maria Isabella Maremonti,&nbsp;Filippo Causa","doi":"10.1002/bit.28810","DOIUrl":null,"url":null,"abstract":"<p>In recent years, nuclear mechanobiology gained a lot of attention for the study of cell responses to external cues like adhesive forces, applied compression, and/or shear-stresses. In details, the Lamin-A protein—as major constituent of the cell nucleus structure—plays a crucial role in the overall nucleus mechanobiological response. However, modeling and analysis of Lamin-A protein organization upon rapid compression conditions in microfluidics are still difficult to be performed. Here, we introduce the possibility to control an applied microfluidic compression on single cells, deforming them up to the nucleus level. In a wide range of stresses (~1–10<sup>2</sup> kPa) applied on healthy and cancer cells, we report increasing Lamin-A intensities which scale as a power law with the applied compression. Then, an increase up to two times of the nuclear viscosity is measured in healthy cells, due to the modified Lamin-A organization. This is ascribable to the increasing assembly of Lamin-A filament-like branches which increment both in number and elongation (up to branches four-time longer). Moreover, the solution of a computational model of differential equations is presented as a powerful tool for a single cell prediction of the Lamin-A assembly as a function of the applied compression.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"121 11","pages":"3551-3562"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.28810","citationCount":"0","resultStr":"{\"title\":\"A computational model for single cell Lamin-A structural organization after microfluidic compression\",\"authors\":\"Maria Isabella Maremonti,&nbsp;Filippo Causa\",\"doi\":\"10.1002/bit.28810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, nuclear mechanobiology gained a lot of attention for the study of cell responses to external cues like adhesive forces, applied compression, and/or shear-stresses. In details, the Lamin-A protein—as major constituent of the cell nucleus structure—plays a crucial role in the overall nucleus mechanobiological response. However, modeling and analysis of Lamin-A protein organization upon rapid compression conditions in microfluidics are still difficult to be performed. Here, we introduce the possibility to control an applied microfluidic compression on single cells, deforming them up to the nucleus level. In a wide range of stresses (~1–10<sup>2</sup> kPa) applied on healthy and cancer cells, we report increasing Lamin-A intensities which scale as a power law with the applied compression. Then, an increase up to two times of the nuclear viscosity is measured in healthy cells, due to the modified Lamin-A organization. This is ascribable to the increasing assembly of Lamin-A filament-like branches which increment both in number and elongation (up to branches four-time longer). Moreover, the solution of a computational model of differential equations is presented as a powerful tool for a single cell prediction of the Lamin-A assembly as a function of the applied compression.</p>\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"121 11\",\"pages\":\"3551-3562\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.28810\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bit.28810\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28810","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,细胞核机械生物学在研究细胞对粘附力、外加压缩力和/或剪切应力等外界因素的反应方面受到广泛关注。具体而言,Lamin-A 蛋白作为细胞核结构的主要成分,在整个细胞核机械生物学反应中发挥着至关重要的作用。然而,在微流体中对快速压缩条件下的 Lamin-A 蛋白组织进行建模和分析还很困难。在此,我们介绍了控制单细胞微流体压缩的可能性,使其变形达到细胞核水平。在施加于健康细胞和癌细胞的广泛应力(~1-102 kPa)范围内,我们报告了层压-A 强度的增加,其规模与施加的压缩成幂律关系。然后,由于 Lamin-A 组织发生改变,在健康细胞中测得的核粘度增加了两倍。这归因于 Lamin-A 丝状分支的装配不断增加,这些分支的数量和伸长率都在增加(最长可达分支长度的四倍)。此外,微分方程计算模型的求解方法是一种强大的工具,可用于预测单细胞中的层粘连-A组装与施加的压力之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A computational model for single cell Lamin-A structural organization after microfluidic compression

A computational model for single cell Lamin-A structural organization after microfluidic compression

In recent years, nuclear mechanobiology gained a lot of attention for the study of cell responses to external cues like adhesive forces, applied compression, and/or shear-stresses. In details, the Lamin-A protein—as major constituent of the cell nucleus structure—plays a crucial role in the overall nucleus mechanobiological response. However, modeling and analysis of Lamin-A protein organization upon rapid compression conditions in microfluidics are still difficult to be performed. Here, we introduce the possibility to control an applied microfluidic compression on single cells, deforming them up to the nucleus level. In a wide range of stresses (~1–102 kPa) applied on healthy and cancer cells, we report increasing Lamin-A intensities which scale as a power law with the applied compression. Then, an increase up to two times of the nuclear viscosity is measured in healthy cells, due to the modified Lamin-A organization. This is ascribable to the increasing assembly of Lamin-A filament-like branches which increment both in number and elongation (up to branches four-time longer). Moreover, the solution of a computational model of differential equations is presented as a powerful tool for a single cell prediction of the Lamin-A assembly as a function of the applied compression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信