Manyu Wang , Ji Li , Jie Liu , Yuqiao Huang , Letao Yang , Chunjiao Zhu , Yilong Zhang , Xin Gui , Haisheng Peng , Maoquan Chu
{"title":"结合动态磁场和激光治疗癌症的智能纳米酶。","authors":"Manyu Wang , Ji Li , Jie Liu , Yuqiao Huang , Letao Yang , Chunjiao Zhu , Yilong Zhang , Xin Gui , Haisheng Peng , Maoquan Chu","doi":"10.1016/j.jcis.2024.07.080","DOIUrl":null,"url":null,"abstract":"<div><p>Developing nanozymes for cancer therapy has attracted great attention from researchers. However, enzymes-loaded magnetic particles triggered by both a low-frequency vibrating magnetic field (VMF) and laser for inhibiting tumor growth have never been reported. Herein, we developed a magnetic nanozyme with 3D flower-like nanostructures for cancer therapy. Specifically, the flower-like nanozymes exposed to a VMF could efficiently damage the mitochondrial membrane and cell structure, and inhibit tumor growth through magneto-mechanical force. In parallel, magnetic nanozymes in a weak acid environment containing glucose could generate abundant hydrogen peroxide through glucose oxidase-catalyzed oxidation of glucose, and further significantly promote the Fenton reaction. Interestingly, both glucose oxidase- and Fenton-based catalytic reactions were significantly promoted by the VMF exposure. Flower-like magnetic nanospheres upon a near-infrared laser irradiation could also damage cancer cells and tumor tissues through photothermal effect. The cell-killing efficiency of magnetic nanozymes triggered by the VMF or laser significantly increased in comparison with that of nanozymes without exposures. Mouse tumors grown after injection with magnetic nanozymes was inhibited in a significant way or the tumors disappeared after exposure to a VMF and laser due to the synergistic effect of four major stimuli, viz., magneto-mechanical force, photothermal conversion, improved Fenton reaction, and intratumoral glucose consumption-based starvation effect. This is a great platform that may be suitable for treating many solid tumors.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"676 ","pages":"Pages 110-126"},"PeriodicalIF":9.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart nanozymes coupled with dynamic magnet field and laser exposures for cancer therapy\",\"authors\":\"Manyu Wang , Ji Li , Jie Liu , Yuqiao Huang , Letao Yang , Chunjiao Zhu , Yilong Zhang , Xin Gui , Haisheng Peng , Maoquan Chu\",\"doi\":\"10.1016/j.jcis.2024.07.080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing nanozymes for cancer therapy has attracted great attention from researchers. However, enzymes-loaded magnetic particles triggered by both a low-frequency vibrating magnetic field (VMF) and laser for inhibiting tumor growth have never been reported. Herein, we developed a magnetic nanozyme with 3D flower-like nanostructures for cancer therapy. Specifically, the flower-like nanozymes exposed to a VMF could efficiently damage the mitochondrial membrane and cell structure, and inhibit tumor growth through magneto-mechanical force. In parallel, magnetic nanozymes in a weak acid environment containing glucose could generate abundant hydrogen peroxide through glucose oxidase-catalyzed oxidation of glucose, and further significantly promote the Fenton reaction. Interestingly, both glucose oxidase- and Fenton-based catalytic reactions were significantly promoted by the VMF exposure. Flower-like magnetic nanospheres upon a near-infrared laser irradiation could also damage cancer cells and tumor tissues through photothermal effect. The cell-killing efficiency of magnetic nanozymes triggered by the VMF or laser significantly increased in comparison with that of nanozymes without exposures. Mouse tumors grown after injection with magnetic nanozymes was inhibited in a significant way or the tumors disappeared after exposure to a VMF and laser due to the synergistic effect of four major stimuli, viz., magneto-mechanical force, photothermal conversion, improved Fenton reaction, and intratumoral glucose consumption-based starvation effect. This is a great platform that may be suitable for treating many solid tumors.</p></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"676 \",\"pages\":\"Pages 110-126\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979724015856\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724015856","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Smart nanozymes coupled with dynamic magnet field and laser exposures for cancer therapy
Developing nanozymes for cancer therapy has attracted great attention from researchers. However, enzymes-loaded magnetic particles triggered by both a low-frequency vibrating magnetic field (VMF) and laser for inhibiting tumor growth have never been reported. Herein, we developed a magnetic nanozyme with 3D flower-like nanostructures for cancer therapy. Specifically, the flower-like nanozymes exposed to a VMF could efficiently damage the mitochondrial membrane and cell structure, and inhibit tumor growth through magneto-mechanical force. In parallel, magnetic nanozymes in a weak acid environment containing glucose could generate abundant hydrogen peroxide through glucose oxidase-catalyzed oxidation of glucose, and further significantly promote the Fenton reaction. Interestingly, both glucose oxidase- and Fenton-based catalytic reactions were significantly promoted by the VMF exposure. Flower-like magnetic nanospheres upon a near-infrared laser irradiation could also damage cancer cells and tumor tissues through photothermal effect. The cell-killing efficiency of magnetic nanozymes triggered by the VMF or laser significantly increased in comparison with that of nanozymes without exposures. Mouse tumors grown after injection with magnetic nanozymes was inhibited in a significant way or the tumors disappeared after exposure to a VMF and laser due to the synergistic effect of four major stimuli, viz., magneto-mechanical force, photothermal conversion, improved Fenton reaction, and intratumoral glucose consumption-based starvation effect. This is a great platform that may be suitable for treating many solid tumors.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies