类盘曲面的剖面和交映容积

IF 2.4 1区 数学 Q1 MATHEMATICS
O. Edtmair
{"title":"类盘曲面的剖面和交映容积","authors":"O. Edtmair","doi":"10.1007/s00039-024-00689-4","DOIUrl":null,"url":null,"abstract":"<p>We prove that the cylindrical capacity of a dynamically convex domain in <span>\\({\\mathbb{R}}^{4}\\)</span> agrees with the least symplectic area of a disk-like global surface of section of the Reeb flow on the boundary of the domain. Moreover, we prove the strong Viterbo conjecture for all convex domains in <span>\\({\\mathbb{R}}^{4}\\)</span> which are sufficiently <i>C</i><sup>3</sup> close to the round ball. This generalizes a result of Abbondandolo-Bramham-Hryniewicz-Salomão establishing a systolic inequality for such domains.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"59 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disk-Like Surfaces of Section and Symplectic Capacities\",\"authors\":\"O. Edtmair\",\"doi\":\"10.1007/s00039-024-00689-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the cylindrical capacity of a dynamically convex domain in <span>\\\\({\\\\mathbb{R}}^{4}\\\\)</span> agrees with the least symplectic area of a disk-like global surface of section of the Reeb flow on the boundary of the domain. Moreover, we prove the strong Viterbo conjecture for all convex domains in <span>\\\\({\\\\mathbb{R}}^{4}\\\\)</span> which are sufficiently <i>C</i><sup>3</sup> close to the round ball. This generalizes a result of Abbondandolo-Bramham-Hryniewicz-Salomão establishing a systolic inequality for such domains.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00689-4\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00689-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在\({\mathbb{R}}^{4}\)中的动态凸域的圆柱容量与该域边界上的里布流的圆盘状全局截面的最小交映面积一致。此外,我们证明了在\({\mathbb{R}}^{4}\)中所有足够 C3 接近圆球的凸域的强维特博猜想。这概括了 Abbondandolo-Bramham-Hryniewicz-Salomão 的一个结果,即为此类域建立了一个收缩不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disk-Like Surfaces of Section and Symplectic Capacities

We prove that the cylindrical capacity of a dynamically convex domain in \({\mathbb{R}}^{4}\) agrees with the least symplectic area of a disk-like global surface of section of the Reeb flow on the boundary of the domain. Moreover, we prove the strong Viterbo conjecture for all convex domains in \({\mathbb{R}}^{4}\) which are sufficiently C3 close to the round ball. This generalizes a result of Abbondandolo-Bramham-Hryniewicz-Salomão establishing a systolic inequality for such domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信