通过领域转换器实现无监督领域自适应

IF 9.3 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chuan-Xian Ren, Yiming Zhai, You-Wei Luo, Hong Yan
{"title":"通过领域转换器实现无监督领域自适应","authors":"Chuan-Xian Ren, Yiming Zhai, You-Wei Luo, Hong Yan","doi":"10.1007/s11263-024-02174-9","DOIUrl":null,"url":null,"abstract":"<p>As a vital problem in pattern analysis and machine intelligence, Unsupervised Domain Adaptation (UDA) attempts to transfer an effective feature learner from a labeled source domain to an unlabeled target domain. Inspired by the success of the Transformer, several advances in UDA are achieved by adopting pure transformers as network architectures, but such a simple application can only capture patch-level information and lacks interpretability. To address these issues, we propose the Domain-Transformer (DoT) with domain-level attention mechanism to capture the long-range correspondence between the cross-domain samples. On the theoretical side, we provide a mathematical understanding of DoT: (1) We connect the domain-level attention with optimal transport theory, which provides interpretability from Wasserstein geometry; (2) From the perspective of learning theory, Wasserstein distance-based generalization bounds are derived, which explains the effectiveness of DoT for knowledge transfer. On the methodological side, DoT integrates the domain-level attention and manifold structure regularization, which characterize the sample-level information and locality consistency for cross-domain cluster structures. Besides, the domain-level attention mechanism can be used as a plug-and-play module, so DoT can be implemented under different neural network architectures. Instead of explicitly modeling the distribution discrepancy at domain-level or class-level, DoT learns transferable features under the guidance of long-range correspondence, so it is free of pseudo-labels and explicit domain discrepancy optimization. Extensive experiment results on several benchmark datasets validate the effectiveness of DoT.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"18 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Unsupervised Domain Adaptation via Domain-Transformer\",\"authors\":\"Chuan-Xian Ren, Yiming Zhai, You-Wei Luo, Hong Yan\",\"doi\":\"10.1007/s11263-024-02174-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a vital problem in pattern analysis and machine intelligence, Unsupervised Domain Adaptation (UDA) attempts to transfer an effective feature learner from a labeled source domain to an unlabeled target domain. Inspired by the success of the Transformer, several advances in UDA are achieved by adopting pure transformers as network architectures, but such a simple application can only capture patch-level information and lacks interpretability. To address these issues, we propose the Domain-Transformer (DoT) with domain-level attention mechanism to capture the long-range correspondence between the cross-domain samples. On the theoretical side, we provide a mathematical understanding of DoT: (1) We connect the domain-level attention with optimal transport theory, which provides interpretability from Wasserstein geometry; (2) From the perspective of learning theory, Wasserstein distance-based generalization bounds are derived, which explains the effectiveness of DoT for knowledge transfer. On the methodological side, DoT integrates the domain-level attention and manifold structure regularization, which characterize the sample-level information and locality consistency for cross-domain cluster structures. Besides, the domain-level attention mechanism can be used as a plug-and-play module, so DoT can be implemented under different neural network architectures. Instead of explicitly modeling the distribution discrepancy at domain-level or class-level, DoT learns transferable features under the guidance of long-range correspondence, so it is free of pseudo-labels and explicit domain discrepancy optimization. Extensive experiment results on several benchmark datasets validate the effectiveness of DoT.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02174-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02174-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

作为模式分析和机器智能领域的一个重要问题,无监督领域适应(UDA)试图将有效的特征学习器从有标记的源领域转移到无标记的目标领域。受变换器成功经验的启发,无监督领域适应(UDA)技术通过采用纯变换器作为网络架构取得了一些进展,但这种简单的应用只能捕捉补丁级信息,缺乏可解释性。为了解决这些问题,我们提出了具有域级关注机制的域变换器(Domain-Transformer,DoT),以捕捉跨域样本之间的长距离对应关系。在理论方面,我们提供了对 DoT 的数学理解:(1)我们将领域级注意力与最优传输理论联系起来,从瓦瑟施泰因几何中提供了可解释性;(2)从学习理论的角度,推导出基于瓦瑟施泰因距离的泛化边界,解释了 DoT 在知识转移方面的有效性。在方法论方面,DoT 整合了领域级注意和流形结构正则化,表征了跨领域聚类结构的样本级信息和定位一致性。此外,领域级注意力机制可以作为即插即用模块使用,因此 DoT 可以在不同的神经网络架构下实现。DoT 在长距离对应性的指导下学习可转移特征,而不是在域级或类级对分布差异进行显式建模,因此不需要伪标签和显式域差异优化。在多个基准数据集上的广泛实验结果验证了 DoT 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Towards Unsupervised Domain Adaptation via Domain-Transformer

Towards Unsupervised Domain Adaptation via Domain-Transformer

As a vital problem in pattern analysis and machine intelligence, Unsupervised Domain Adaptation (UDA) attempts to transfer an effective feature learner from a labeled source domain to an unlabeled target domain. Inspired by the success of the Transformer, several advances in UDA are achieved by adopting pure transformers as network architectures, but such a simple application can only capture patch-level information and lacks interpretability. To address these issues, we propose the Domain-Transformer (DoT) with domain-level attention mechanism to capture the long-range correspondence between the cross-domain samples. On the theoretical side, we provide a mathematical understanding of DoT: (1) We connect the domain-level attention with optimal transport theory, which provides interpretability from Wasserstein geometry; (2) From the perspective of learning theory, Wasserstein distance-based generalization bounds are derived, which explains the effectiveness of DoT for knowledge transfer. On the methodological side, DoT integrates the domain-level attention and manifold structure regularization, which characterize the sample-level information and locality consistency for cross-domain cluster structures. Besides, the domain-level attention mechanism can be used as a plug-and-play module, so DoT can be implemented under different neural network architectures. Instead of explicitly modeling the distribution discrepancy at domain-level or class-level, DoT learns transferable features under the guidance of long-range correspondence, so it is free of pseudo-labels and explicit domain discrepancy optimization. Extensive experiment results on several benchmark datasets validate the effectiveness of DoT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信