Chuan-Xian Ren, Yiming Zhai, You-Wei Luo, Hong Yan
{"title":"通过领域转换器实现无监督领域自适应","authors":"Chuan-Xian Ren, Yiming Zhai, You-Wei Luo, Hong Yan","doi":"10.1007/s11263-024-02174-9","DOIUrl":null,"url":null,"abstract":"<p>As a vital problem in pattern analysis and machine intelligence, Unsupervised Domain Adaptation (UDA) attempts to transfer an effective feature learner from a labeled source domain to an unlabeled target domain. Inspired by the success of the Transformer, several advances in UDA are achieved by adopting pure transformers as network architectures, but such a simple application can only capture patch-level information and lacks interpretability. To address these issues, we propose the Domain-Transformer (DoT) with domain-level attention mechanism to capture the long-range correspondence between the cross-domain samples. On the theoretical side, we provide a mathematical understanding of DoT: (1) We connect the domain-level attention with optimal transport theory, which provides interpretability from Wasserstein geometry; (2) From the perspective of learning theory, Wasserstein distance-based generalization bounds are derived, which explains the effectiveness of DoT for knowledge transfer. On the methodological side, DoT integrates the domain-level attention and manifold structure regularization, which characterize the sample-level information and locality consistency for cross-domain cluster structures. Besides, the domain-level attention mechanism can be used as a plug-and-play module, so DoT can be implemented under different neural network architectures. Instead of explicitly modeling the distribution discrepancy at domain-level or class-level, DoT learns transferable features under the guidance of long-range correspondence, so it is free of pseudo-labels and explicit domain discrepancy optimization. Extensive experiment results on several benchmark datasets validate the effectiveness of DoT.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"18 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Unsupervised Domain Adaptation via Domain-Transformer\",\"authors\":\"Chuan-Xian Ren, Yiming Zhai, You-Wei Luo, Hong Yan\",\"doi\":\"10.1007/s11263-024-02174-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a vital problem in pattern analysis and machine intelligence, Unsupervised Domain Adaptation (UDA) attempts to transfer an effective feature learner from a labeled source domain to an unlabeled target domain. Inspired by the success of the Transformer, several advances in UDA are achieved by adopting pure transformers as network architectures, but such a simple application can only capture patch-level information and lacks interpretability. To address these issues, we propose the Domain-Transformer (DoT) with domain-level attention mechanism to capture the long-range correspondence between the cross-domain samples. On the theoretical side, we provide a mathematical understanding of DoT: (1) We connect the domain-level attention with optimal transport theory, which provides interpretability from Wasserstein geometry; (2) From the perspective of learning theory, Wasserstein distance-based generalization bounds are derived, which explains the effectiveness of DoT for knowledge transfer. On the methodological side, DoT integrates the domain-level attention and manifold structure regularization, which characterize the sample-level information and locality consistency for cross-domain cluster structures. Besides, the domain-level attention mechanism can be used as a plug-and-play module, so DoT can be implemented under different neural network architectures. Instead of explicitly modeling the distribution discrepancy at domain-level or class-level, DoT learns transferable features under the guidance of long-range correspondence, so it is free of pseudo-labels and explicit domain discrepancy optimization. Extensive experiment results on several benchmark datasets validate the effectiveness of DoT.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02174-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02174-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Towards Unsupervised Domain Adaptation via Domain-Transformer
As a vital problem in pattern analysis and machine intelligence, Unsupervised Domain Adaptation (UDA) attempts to transfer an effective feature learner from a labeled source domain to an unlabeled target domain. Inspired by the success of the Transformer, several advances in UDA are achieved by adopting pure transformers as network architectures, but such a simple application can only capture patch-level information and lacks interpretability. To address these issues, we propose the Domain-Transformer (DoT) with domain-level attention mechanism to capture the long-range correspondence between the cross-domain samples. On the theoretical side, we provide a mathematical understanding of DoT: (1) We connect the domain-level attention with optimal transport theory, which provides interpretability from Wasserstein geometry; (2) From the perspective of learning theory, Wasserstein distance-based generalization bounds are derived, which explains the effectiveness of DoT for knowledge transfer. On the methodological side, DoT integrates the domain-level attention and manifold structure regularization, which characterize the sample-level information and locality consistency for cross-domain cluster structures. Besides, the domain-level attention mechanism can be used as a plug-and-play module, so DoT can be implemented under different neural network architectures. Instead of explicitly modeling the distribution discrepancy at domain-level or class-level, DoT learns transferable features under the guidance of long-range correspondence, so it is free of pseudo-labels and explicit domain discrepancy optimization. Extensive experiment results on several benchmark datasets validate the effectiveness of DoT.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.