有限图的嵌入和第一个拉普拉斯特征值

Pub Date : 2024-07-16 DOI:10.1007/s10878-024-01191-1
Takumi Gomyou, Toshimasa Kobayashi, Takefumi Kondo, Shin Nayatani
{"title":"有限图的嵌入和第一个拉普拉斯特征值","authors":"Takumi Gomyou, Toshimasa Kobayashi, Takefumi Kondo, Shin Nayatani","doi":"10.1007/s10878-024-01191-1","DOIUrl":null,"url":null,"abstract":"<p>Göring–Helmberg–Wappler introduced optimization problems regarding embeddings of a graph into a Euclidean space and the first nonzero eigenvalue of the Laplacian of a graph, which are dual to each other in the framework of semidefinite programming. In this paper, we introduce a new graph-embedding optimization problem, and discuss its relation to Göring–Helmberg–Wappler’s problems. We also identify the dual problem to our embedding optimization problem. We solve the optimization problems for distance-regular graphs and the one-skeleton graphs of the <span>\\(\\textrm{C}_{60}\\)</span> fullerene and some other Archimedian solids.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedding and the first Laplace eigenvalue of a finite graph\",\"authors\":\"Takumi Gomyou, Toshimasa Kobayashi, Takefumi Kondo, Shin Nayatani\",\"doi\":\"10.1007/s10878-024-01191-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Göring–Helmberg–Wappler introduced optimization problems regarding embeddings of a graph into a Euclidean space and the first nonzero eigenvalue of the Laplacian of a graph, which are dual to each other in the framework of semidefinite programming. In this paper, we introduce a new graph-embedding optimization problem, and discuss its relation to Göring–Helmberg–Wappler’s problems. We also identify the dual problem to our embedding optimization problem. We solve the optimization problems for distance-regular graphs and the one-skeleton graphs of the <span>\\\\(\\\\textrm{C}_{60}\\\\)</span> fullerene and some other Archimedian solids.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-024-01191-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01191-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Göring-Helmberg-Wappler 提出了关于图嵌入欧几里得空间的优化问题和图的拉普拉奇第一个非零特征值的优化问题,这两个问题在半定量编程框架中互为对偶。本文介绍了一个新的图嵌入优化问题,并讨论了它与 Göring-Helmberg-Wappler 问题的关系。我们还确定了嵌入优化问题的对偶问题。我们解决了富勒烯和其他一些阿基米德实体的距离规则图和单骨架图的优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Embedding and the first Laplace eigenvalue of a finite graph

Göring–Helmberg–Wappler introduced optimization problems regarding embeddings of a graph into a Euclidean space and the first nonzero eigenvalue of the Laplacian of a graph, which are dual to each other in the framework of semidefinite programming. In this paper, we introduce a new graph-embedding optimization problem, and discuss its relation to Göring–Helmberg–Wappler’s problems. We also identify the dual problem to our embedding optimization problem. We solve the optimization problems for distance-regular graphs and the one-skeleton graphs of the \(\textrm{C}_{60}\) fullerene and some other Archimedian solids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信