用于指纹欺骗检测的可解释连体注意力 Res-CNN

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chengsheng Yuan, Zhenyu Xu, Xinting Li, Zhili Zhou, Junhao Huang, Ping Guo
{"title":"用于指纹欺骗检测的可解释连体注意力 Res-CNN","authors":"Chengsheng Yuan,&nbsp;Zhenyu Xu,&nbsp;Xinting Li,&nbsp;Zhili Zhou,&nbsp;Junhao Huang,&nbsp;Ping Guo","doi":"10.1049/2024/6630173","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In recent years, fingerprint authentication has gained widespread adoption in diverse identification systems, including smartphones, wearable devices, and attendance machines, etc. Nonetheless, these systems are vulnerable to spoofing attacks from suspicious fingerprints, posing significant risks to privacy. Consequently, a fingerprint presentation attack detection (PAD) strategy is proposed to ensure the security of these systems. Most of the previous work concentrated on how to build a deep learning framework to improve the PAD performance by augmenting fingerprint samples, and little attention has been paid to the fundamental difference between live and fake fingerprints to optimize feature extractors. This paper proposes a new fingerprint liveness detection method based on Siamese attention residual convolutional neural network (Res-CNN) that offers an interpretative perspective to this challenge. To leverage the variance in ridge continuity features (RCFs) between live and fake fingerprints, a Gabor filter is utilized to enhance the texture details of the fingerprint ridges, followed by the construction of an attention Res-CNN model to extract RCF between the live and fake fingerprints. The model mitigates the performance deterioration caused by gradient disappearance. Furthermore, to highlight the difference in RCF, a Siamese attention residual network is devised, and the ridge continuity amplification loss function is designed to optimize the training process. Ultimately, the RCF parameters are transferred to the model, and transfer learning is utilized to aid its acquisition, thereby assuring the model’s interpretability. The experimental outcomes conducted on three publicly accessible fingerprint datasets demonstrate the superiority of the proposed method, exhibiting remarkable performance in both true detection rate and average classification error rate. Moreover, our method exhibits remarkable capabilities in PAD tasks, including cross-material experiments and cross-sensor experiments. Additionally, we leverage Gradient-weighted Class Activation Mapping to generate a heatmap that visualizes the interpretability of our model, offering a compelling visual validation.</p>\n </div>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"2024 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6630173","citationCount":"0","resultStr":"{\"title\":\"An Interpretable Siamese Attention Res-CNN for Fingerprint Spoofing Detection\",\"authors\":\"Chengsheng Yuan,&nbsp;Zhenyu Xu,&nbsp;Xinting Li,&nbsp;Zhili Zhou,&nbsp;Junhao Huang,&nbsp;Ping Guo\",\"doi\":\"10.1049/2024/6630173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In recent years, fingerprint authentication has gained widespread adoption in diverse identification systems, including smartphones, wearable devices, and attendance machines, etc. Nonetheless, these systems are vulnerable to spoofing attacks from suspicious fingerprints, posing significant risks to privacy. Consequently, a fingerprint presentation attack detection (PAD) strategy is proposed to ensure the security of these systems. Most of the previous work concentrated on how to build a deep learning framework to improve the PAD performance by augmenting fingerprint samples, and little attention has been paid to the fundamental difference between live and fake fingerprints to optimize feature extractors. This paper proposes a new fingerprint liveness detection method based on Siamese attention residual convolutional neural network (Res-CNN) that offers an interpretative perspective to this challenge. To leverage the variance in ridge continuity features (RCFs) between live and fake fingerprints, a Gabor filter is utilized to enhance the texture details of the fingerprint ridges, followed by the construction of an attention Res-CNN model to extract RCF between the live and fake fingerprints. The model mitigates the performance deterioration caused by gradient disappearance. Furthermore, to highlight the difference in RCF, a Siamese attention residual network is devised, and the ridge continuity amplification loss function is designed to optimize the training process. Ultimately, the RCF parameters are transferred to the model, and transfer learning is utilized to aid its acquisition, thereby assuring the model’s interpretability. The experimental outcomes conducted on three publicly accessible fingerprint datasets demonstrate the superiority of the proposed method, exhibiting remarkable performance in both true detection rate and average classification error rate. Moreover, our method exhibits remarkable capabilities in PAD tasks, including cross-material experiments and cross-sensor experiments. Additionally, we leverage Gradient-weighted Class Activation Mapping to generate a heatmap that visualizes the interpretability of our model, offering a compelling visual validation.</p>\\n </div>\",\"PeriodicalId\":48821,\"journal\":{\"name\":\"IET Biometrics\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6630173\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Biometrics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/6630173\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/6630173","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,指纹验证在智能手机、可穿戴设备和考勤机等各种身份识别系统中得到了广泛应用。然而,这些系统很容易受到可疑指纹的欺骗攻击,给隐私带来巨大风险。因此,我们提出了指纹呈现攻击检测(PAD)策略,以确保这些系统的安全性。以往的工作大多集中在如何构建一个深度学习框架,通过增强指纹样本来提高 PAD 性能,而很少有人关注活体指纹和假指纹之间的根本区别,以优化特征提取器。本文提出了一种基于连体注意残差卷积神经网络(Res-CNN)的新型指纹真实性检测方法,为应对这一挑战提供了一种解释性视角。为了利用真假指纹脊连续性特征(RCF)的差异,本文利用 Gabor 滤波器增强指纹脊的纹理细节,然后构建注意力残差卷积神经网络模型来提取真假指纹之间的 RCF。该模型可减轻因梯度消失而导致的性能下降。此外,为了突出 RCF 的差异,设计了一个连体注意残差网络,并设计了脊连续性放大损失函数来优化训练过程。最后,将 RCF 参数转移到模型中,并利用迁移学习来帮助模型的获取,从而确保模型的可解释性。在三个可公开访问的指纹数据集上进行的实验结果表明了所提方法的优越性,在真实检测率和平均分类错误率方面都表现出色。此外,我们的方法在 PAD 任务(包括跨材料实验和跨传感器实验)中表现出卓越的能力。此外,我们还利用梯度加权类激活映射生成热图,直观显示了我们模型的可解释性,提供了令人信服的可视化验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Interpretable Siamese Attention Res-CNN for Fingerprint Spoofing Detection

An Interpretable Siamese Attention Res-CNN for Fingerprint Spoofing Detection

In recent years, fingerprint authentication has gained widespread adoption in diverse identification systems, including smartphones, wearable devices, and attendance machines, etc. Nonetheless, these systems are vulnerable to spoofing attacks from suspicious fingerprints, posing significant risks to privacy. Consequently, a fingerprint presentation attack detection (PAD) strategy is proposed to ensure the security of these systems. Most of the previous work concentrated on how to build a deep learning framework to improve the PAD performance by augmenting fingerprint samples, and little attention has been paid to the fundamental difference between live and fake fingerprints to optimize feature extractors. This paper proposes a new fingerprint liveness detection method based on Siamese attention residual convolutional neural network (Res-CNN) that offers an interpretative perspective to this challenge. To leverage the variance in ridge continuity features (RCFs) between live and fake fingerprints, a Gabor filter is utilized to enhance the texture details of the fingerprint ridges, followed by the construction of an attention Res-CNN model to extract RCF between the live and fake fingerprints. The model mitigates the performance deterioration caused by gradient disappearance. Furthermore, to highlight the difference in RCF, a Siamese attention residual network is devised, and the ridge continuity amplification loss function is designed to optimize the training process. Ultimately, the RCF parameters are transferred to the model, and transfer learning is utilized to aid its acquisition, thereby assuring the model’s interpretability. The experimental outcomes conducted on three publicly accessible fingerprint datasets demonstrate the superiority of the proposed method, exhibiting remarkable performance in both true detection rate and average classification error rate. Moreover, our method exhibits remarkable capabilities in PAD tasks, including cross-material experiments and cross-sensor experiments. Additionally, we leverage Gradient-weighted Class Activation Mapping to generate a heatmap that visualizes the interpretability of our model, offering a compelling visual validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信