{"title":"面向移动视觉检测的站点-视点联合覆盖路径规划","authors":"Feifei Kong, Fuzhou Du, Delong Zhao","doi":"10.1016/j.rcim.2024.102821","DOIUrl":null,"url":null,"abstract":"<div><p>Coverage path planning (CPP) has been widely studied due to its significant impact on the efficiency of automated surface quality inspection. However, these researches mostly concentrate on fixed-base visual robotic schemes, with limited focus on the widely utilized mobile-base schemes which require considerations of inherent constraints between stations (base positions) and viewpoints. Therefore, this article models a station-viewpoint joint coverage path planning problem and proposes a workflow to solve it. Within this workflow, firstly, a viewpoint selection genetic algorithm based on alternating evolution strategy is presented to optimize both the viewpoint quantity and view quality; secondly, a novel genetic algorithm is devised to accomplish joint assignment and sequence planning for stations and viewpoints. Several experimental studies are conducted to validate the effectiveness and efficiency of the proposed methods, and the proposed genetic algorithms exhibit notable superiorities compared to the benchmark methods in terms of viewpoint quantity, mean view quality, motion cost, and computational efficiency.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"91 ","pages":"Article 102821"},"PeriodicalIF":9.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Station-viewpoint joint coverage path planning towards mobile visual inspection\",\"authors\":\"Feifei Kong, Fuzhou Du, Delong Zhao\",\"doi\":\"10.1016/j.rcim.2024.102821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coverage path planning (CPP) has been widely studied due to its significant impact on the efficiency of automated surface quality inspection. However, these researches mostly concentrate on fixed-base visual robotic schemes, with limited focus on the widely utilized mobile-base schemes which require considerations of inherent constraints between stations (base positions) and viewpoints. Therefore, this article models a station-viewpoint joint coverage path planning problem and proposes a workflow to solve it. Within this workflow, firstly, a viewpoint selection genetic algorithm based on alternating evolution strategy is presented to optimize both the viewpoint quantity and view quality; secondly, a novel genetic algorithm is devised to accomplish joint assignment and sequence planning for stations and viewpoints. Several experimental studies are conducted to validate the effectiveness and efficiency of the proposed methods, and the proposed genetic algorithms exhibit notable superiorities compared to the benchmark methods in terms of viewpoint quantity, mean view quality, motion cost, and computational efficiency.</p></div>\",\"PeriodicalId\":21452,\"journal\":{\"name\":\"Robotics and Computer-integrated Manufacturing\",\"volume\":\"91 \",\"pages\":\"Article 102821\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Computer-integrated Manufacturing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S073658452400108X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073658452400108X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Station-viewpoint joint coverage path planning towards mobile visual inspection
Coverage path planning (CPP) has been widely studied due to its significant impact on the efficiency of automated surface quality inspection. However, these researches mostly concentrate on fixed-base visual robotic schemes, with limited focus on the widely utilized mobile-base schemes which require considerations of inherent constraints between stations (base positions) and viewpoints. Therefore, this article models a station-viewpoint joint coverage path planning problem and proposes a workflow to solve it. Within this workflow, firstly, a viewpoint selection genetic algorithm based on alternating evolution strategy is presented to optimize both the viewpoint quantity and view quality; secondly, a novel genetic algorithm is devised to accomplish joint assignment and sequence planning for stations and viewpoints. Several experimental studies are conducted to validate the effectiveness and efficiency of the proposed methods, and the proposed genetic algorithms exhibit notable superiorities compared to the benchmark methods in terms of viewpoint quantity, mean view quality, motion cost, and computational efficiency.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.