解密 Synechocystis sp. B12 中多-3-羟基丁酸生成增强的遗传景观。

IF 6.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Anna Santin, Flavio Collura, Garima Singh, Maria Silvia Morlino, Edoardo Bizzotto, Alessandra Bellan, Ameya Pankaj Gupte, Lorenzo Favaro, Stefano Campanaro, Laura Treu, Tomas Morosinotto
{"title":"解密 Synechocystis sp. B12 中多-3-羟基丁酸生成增强的遗传景观。","authors":"Anna Santin,&nbsp;Flavio Collura,&nbsp;Garima Singh,&nbsp;Maria Silvia Morlino,&nbsp;Edoardo Bizzotto,&nbsp;Alessandra Bellan,&nbsp;Ameya Pankaj Gupte,&nbsp;Lorenzo Favaro,&nbsp;Stefano Campanaro,&nbsp;Laura Treu,&nbsp;Tomas Morosinotto","doi":"10.1186/s13068-024-02548-8","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Microbial biopolymers such as poly-3-hydroxybutyrate (PHB) are emerging as promising alternatives for sustainable production of biodegradable bioplastics. Their promise is heightened by the potential utilisation of photosynthetic organisms, thus exploiting sunlight and carbon dioxide as source of energy and carbon, respectively. The cyanobacterium <i>Synechocystis</i> sp. B12 is an attractive candidate for its superior ability to accumulate high amounts of PHB as well as for its high-light tolerance, which makes it extremely suitable for large-scale cultivation. Beyond its practical applications, B12 serves as an intriguing model for unravelling the molecular mechanisms behind PHB accumulation.</p><h3>Results</h3><p>Through a multifaceted approach, integrating physiological, genomic and transcriptomic analyses, this work identified genes involved in the upregulation of chlorophyll biosynthesis and phycobilisome degradation as the possible candidates providing <i>Synechocystis</i> sp. B12 an advantage in growth under high-light conditions. Gene expression differences in pentose phosphate pathway and acetyl-CoA metabolism were instead recognised as mainly responsible for the increased <i>Synechocystis</i> sp. B12 PHB production during nitrogen starvation. In both response to strong illumination and PHB accumulation, <i>Synechocystis</i> sp. B12 showed a metabolic modulation similar but more pronounced than the reference strain, yielding in better performances.</p><h3>Conclusions</h3><p>Our findings shed light on the molecular mechanisms of PHB biosynthesis, providing valuable insights for optimising the use of <i>Synechocystis</i> in economically viable and sustainable PHB production. In addition, this work supplies crucial knowledge about the metabolic processes involved in production and accumulation of these molecules, which can be seminal for the application to other microorganisms as well.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253406/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deciphering the genetic landscape of enhanced poly-3-hydroxybutyrate production in Synechocystis sp. B12\",\"authors\":\"Anna Santin,&nbsp;Flavio Collura,&nbsp;Garima Singh,&nbsp;Maria Silvia Morlino,&nbsp;Edoardo Bizzotto,&nbsp;Alessandra Bellan,&nbsp;Ameya Pankaj Gupte,&nbsp;Lorenzo Favaro,&nbsp;Stefano Campanaro,&nbsp;Laura Treu,&nbsp;Tomas Morosinotto\",\"doi\":\"10.1186/s13068-024-02548-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Microbial biopolymers such as poly-3-hydroxybutyrate (PHB) are emerging as promising alternatives for sustainable production of biodegradable bioplastics. Their promise is heightened by the potential utilisation of photosynthetic organisms, thus exploiting sunlight and carbon dioxide as source of energy and carbon, respectively. The cyanobacterium <i>Synechocystis</i> sp. B12 is an attractive candidate for its superior ability to accumulate high amounts of PHB as well as for its high-light tolerance, which makes it extremely suitable for large-scale cultivation. Beyond its practical applications, B12 serves as an intriguing model for unravelling the molecular mechanisms behind PHB accumulation.</p><h3>Results</h3><p>Through a multifaceted approach, integrating physiological, genomic and transcriptomic analyses, this work identified genes involved in the upregulation of chlorophyll biosynthesis and phycobilisome degradation as the possible candidates providing <i>Synechocystis</i> sp. B12 an advantage in growth under high-light conditions. Gene expression differences in pentose phosphate pathway and acetyl-CoA metabolism were instead recognised as mainly responsible for the increased <i>Synechocystis</i> sp. B12 PHB production during nitrogen starvation. In both response to strong illumination and PHB accumulation, <i>Synechocystis</i> sp. B12 showed a metabolic modulation similar but more pronounced than the reference strain, yielding in better performances.</p><h3>Conclusions</h3><p>Our findings shed light on the molecular mechanisms of PHB biosynthesis, providing valuable insights for optimising the use of <i>Synechocystis</i> in economically viable and sustainable PHB production. In addition, this work supplies crucial knowledge about the metabolic processes involved in production and accumulation of these molecules, which can be seminal for the application to other microorganisms as well.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253406/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-024-02548-8\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02548-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:聚 3-羟基丁酸(PHB)等微生物生物聚合物正逐渐成为可持续生产生物可降解生物塑料的理想替代品。由于可利用光合生物,从而分别利用阳光和二氧化碳作为能量和碳源,因此它们的前景更为广阔。蓝藻 Synechocystis sp. B12 是一种极具吸引力的候选生物,因为它具有积累大量 PHB 的超强能力和高耐光性,非常适合大规模培养。除了其实际应用之外,B12 还是一个揭示 PHB 积累背后分子机制的有趣模型:结果:通过生理学、基因组学和转录组学分析等多方面的综合方法,这项工作确定了参与叶绿素生物合成上调和藻体降解的基因,这些基因可能为 Synechocystis sp. B12 在高光条件下的生长提供优势。相反,磷酸戊糖途径和乙酰-CoA 代谢中的基因表达差异被认为是导致 Synechocystis sp.在对强光照的响应和 PHB 积累方面,Synechocystis sp. B12 表现出与参考菌株相似但更明显的代谢调节,从而获得了更好的表现:我们的研究结果揭示了 PHB 生物合成的分子机制,为优化 Synechocystis 在经济可行和可持续 PHB 生产中的应用提供了宝贵的见解。此外,这项工作还提供了有关生产和积累这些分子的代谢过程的重要知识,这对其他微生物的应用也具有开创性意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deciphering the genetic landscape of enhanced poly-3-hydroxybutyrate production in Synechocystis sp. B12

Background

Microbial biopolymers such as poly-3-hydroxybutyrate (PHB) are emerging as promising alternatives for sustainable production of biodegradable bioplastics. Their promise is heightened by the potential utilisation of photosynthetic organisms, thus exploiting sunlight and carbon dioxide as source of energy and carbon, respectively. The cyanobacterium Synechocystis sp. B12 is an attractive candidate for its superior ability to accumulate high amounts of PHB as well as for its high-light tolerance, which makes it extremely suitable for large-scale cultivation. Beyond its practical applications, B12 serves as an intriguing model for unravelling the molecular mechanisms behind PHB accumulation.

Results

Through a multifaceted approach, integrating physiological, genomic and transcriptomic analyses, this work identified genes involved in the upregulation of chlorophyll biosynthesis and phycobilisome degradation as the possible candidates providing Synechocystis sp. B12 an advantage in growth under high-light conditions. Gene expression differences in pentose phosphate pathway and acetyl-CoA metabolism were instead recognised as mainly responsible for the increased Synechocystis sp. B12 PHB production during nitrogen starvation. In both response to strong illumination and PHB accumulation, Synechocystis sp. B12 showed a metabolic modulation similar but more pronounced than the reference strain, yielding in better performances.

Conclusions

Our findings shed light on the molecular mechanisms of PHB biosynthesis, providing valuable insights for optimising the use of Synechocystis in economically viable and sustainable PHB production. In addition, this work supplies crucial knowledge about the metabolic processes involved in production and accumulation of these molecules, which can be seminal for the application to other microorganisms as well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology for Biofuels
Biotechnology for Biofuels 工程技术-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass. Biotechnology for Biofuels focuses on the following areas: • Development of terrestrial plant feedstocks • Development of algal feedstocks • Biomass pretreatment, fractionation and extraction for biological conversion • Enzyme engineering, production and analysis • Bacterial genetics, physiology and metabolic engineering • Fungal/yeast genetics, physiology and metabolic engineering • Fermentation, biocatalytic conversion and reaction dynamics • Biological production of chemicals and bioproducts from biomass • Anaerobic digestion, biohydrogen and bioelectricity • Bioprocess integration, techno-economic analysis, modelling and policy • Life cycle assessment and environmental impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信