利用虚拟节点提升图神经网络,预测声子特性。

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"利用虚拟节点提升图神经网络,预测声子特性。","authors":"","doi":"10.1038/s43588-024-00665-w","DOIUrl":null,"url":null,"abstract":"A graph neural network using virtual nodes is proposed to predict the properties of complex materials with variable dimensions or dimensions that depend on the input. The method is used to accurately and quickly predict phonon dispersion relations in complex solids and alloys.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":12.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting graph neural networks with virtual nodes to predict phonon properties\",\"authors\":\"\",\"doi\":\"10.1038/s43588-024-00665-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A graph neural network using virtual nodes is proposed to predict the properties of complex materials with variable dimensions or dimensions that depend on the input. The method is used to accurately and quickly predict phonon dispersion relations in complex solids and alloys.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00665-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00665-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种使用虚拟节点的图神经网络,用于预测具有可变尺寸或尺寸取决于输入的复杂材料的特性。该方法可用于准确、快速地预测复杂固体和合金中的声子色散关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Boosting graph neural networks with virtual nodes to predict phonon properties

Boosting graph neural networks with virtual nodes to predict phonon properties

Boosting graph neural networks with virtual nodes to predict phonon properties
A graph neural network using virtual nodes is proposed to predict the properties of complex materials with variable dimensions or dimensions that depend on the input. The method is used to accurately and quickly predict phonon dispersion relations in complex solids and alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信