{"title":"白细胞介素-17A 通过激活肺成纤维细胞分泌的 C-X-C Motif Chemokine Ligand 12 促进慢性阻塞性肺病的气道重塑","authors":"Xiaolu Chen, Liping Chen, Guanying Chen, Jiapei Lv, Jincong Wang, Wanjun Yu, Huaying Wang","doi":"10.15326/jcopdf.2024.0495","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The interactions between fibroblasts and bronchial epithelial cells play important roles in the development of chronic obstructive pulmonary disease (COPD). Interleukin (IL)-17A triggers the activation of fibroblasts and the secretion of inflammatory mediators, which promotes epithelial-mesenchymal transition (EMT) in bronchial epithelial cells. Fibroblasts secrete C-X-C motif chemokine ligand 12 (CXCL12), which specifically binds to its receptor, C-X-C motif chemokine receptor 4 (CXCR4) to mediate inflammatory responses. This study aims to investigate IL-17A- and CXCL12-induced airway remodeling.</p><p><strong>Methods: </strong>Primary lung fibroblasts were isolated from human and murine lung tissue for the in vitro experiments, and a mouse model of cigarette smoke (CS)-induced COPD was established for the in vivo experiments. The results were analyzed using a one-way analysis of variance and Tukey's test or Bonferroni's test for the post-hoc test. A <i>p</i>-value < 0.05 was considered statistically significant.</p><p><strong>Results: </strong>Through in vitro experiments, we found that IL-17A-activated primary lung fibroblasts secreted CXCL12 and stimulated EMT in bronchial epithelial cells. However, these effects could be blocked by neutralizing IL-17A or CXCL12. In vivo, an anti-IL-17A antibody or a CXCR4 antagonist could reverse the degree of EMT in the lungs of the COPD mouse model. The IL-17A-induced EMT and increased CXCL12 expression occurred via extracellular signal-regulated kinase (ERK)/phosphorylated-ERK pathways.</p><p><strong>Conclusion: </strong>This study showed that exposure of mice to CS and IL-17A stimulation upregulated CXCL12 expression and induced EMT by activating the ERK signaling pathway. These data offer a novel perspective regarding the molecular mechanism of CXCL12/CXCR4 signaling in IL-17A-induced EMT related to airway remodeling.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548971/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interleukin-17A Promotes Airway Remodeling in Chronic Obstructive Pulmonary Disease by Activating C-X-C Motif Chemokine Ligand 12 Secreted by Lung Fibroblasts.\",\"authors\":\"Xiaolu Chen, Liping Chen, Guanying Chen, Jiapei Lv, Jincong Wang, Wanjun Yu, Huaying Wang\",\"doi\":\"10.15326/jcopdf.2024.0495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The interactions between fibroblasts and bronchial epithelial cells play important roles in the development of chronic obstructive pulmonary disease (COPD). Interleukin (IL)-17A triggers the activation of fibroblasts and the secretion of inflammatory mediators, which promotes epithelial-mesenchymal transition (EMT) in bronchial epithelial cells. Fibroblasts secrete C-X-C motif chemokine ligand 12 (CXCL12), which specifically binds to its receptor, C-X-C motif chemokine receptor 4 (CXCR4) to mediate inflammatory responses. This study aims to investigate IL-17A- and CXCL12-induced airway remodeling.</p><p><strong>Methods: </strong>Primary lung fibroblasts were isolated from human and murine lung tissue for the in vitro experiments, and a mouse model of cigarette smoke (CS)-induced COPD was established for the in vivo experiments. The results were analyzed using a one-way analysis of variance and Tukey's test or Bonferroni's test for the post-hoc test. A <i>p</i>-value < 0.05 was considered statistically significant.</p><p><strong>Results: </strong>Through in vitro experiments, we found that IL-17A-activated primary lung fibroblasts secreted CXCL12 and stimulated EMT in bronchial epithelial cells. However, these effects could be blocked by neutralizing IL-17A or CXCL12. In vivo, an anti-IL-17A antibody or a CXCR4 antagonist could reverse the degree of EMT in the lungs of the COPD mouse model. The IL-17A-induced EMT and increased CXCL12 expression occurred via extracellular signal-regulated kinase (ERK)/phosphorylated-ERK pathways.</p><p><strong>Conclusion: </strong>This study showed that exposure of mice to CS and IL-17A stimulation upregulated CXCL12 expression and induced EMT by activating the ERK signaling pathway. These data offer a novel perspective regarding the molecular mechanism of CXCL12/CXCR4 signaling in IL-17A-induced EMT related to airway remodeling.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548971/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.15326/jcopdf.2024.0495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15326/jcopdf.2024.0495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Interleukin-17A Promotes Airway Remodeling in Chronic Obstructive Pulmonary Disease by Activating C-X-C Motif Chemokine Ligand 12 Secreted by Lung Fibroblasts.
Background: The interactions between fibroblasts and bronchial epithelial cells play important roles in the development of chronic obstructive pulmonary disease (COPD). Interleukin (IL)-17A triggers the activation of fibroblasts and the secretion of inflammatory mediators, which promotes epithelial-mesenchymal transition (EMT) in bronchial epithelial cells. Fibroblasts secrete C-X-C motif chemokine ligand 12 (CXCL12), which specifically binds to its receptor, C-X-C motif chemokine receptor 4 (CXCR4) to mediate inflammatory responses. This study aims to investigate IL-17A- and CXCL12-induced airway remodeling.
Methods: Primary lung fibroblasts were isolated from human and murine lung tissue for the in vitro experiments, and a mouse model of cigarette smoke (CS)-induced COPD was established for the in vivo experiments. The results were analyzed using a one-way analysis of variance and Tukey's test or Bonferroni's test for the post-hoc test. A p-value < 0.05 was considered statistically significant.
Results: Through in vitro experiments, we found that IL-17A-activated primary lung fibroblasts secreted CXCL12 and stimulated EMT in bronchial epithelial cells. However, these effects could be blocked by neutralizing IL-17A or CXCL12. In vivo, an anti-IL-17A antibody or a CXCR4 antagonist could reverse the degree of EMT in the lungs of the COPD mouse model. The IL-17A-induced EMT and increased CXCL12 expression occurred via extracellular signal-regulated kinase (ERK)/phosphorylated-ERK pathways.
Conclusion: This study showed that exposure of mice to CS and IL-17A stimulation upregulated CXCL12 expression and induced EMT by activating the ERK signaling pathway. These data offer a novel perspective regarding the molecular mechanism of CXCL12/CXCR4 signaling in IL-17A-induced EMT related to airway remodeling.