通过全等立方的局部特殊约翰-尼伦伯格-坎帕纳托空间及其在局部卡尔德龙-齐格蒙德奇异积分和分数积分的有界性中的应用

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Junan Shi, Hongchao Jia, Dachun Yang
{"title":"通过全等立方的局部特殊约翰-尼伦伯格-坎帕纳托空间及其在局部卡尔德龙-齐格蒙德奇异积分和分数积分的有界性中的应用","authors":"Junan Shi, Hongchao Jia, Dachun Yang","doi":"10.1007/s13540-024-00307-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(p,q\\in [1,\\infty )\\)</span>, <i>s</i> be a nonnegative integer, <span>\\(\\alpha \\in \\mathbb {R}\\)</span>, and <span>\\(\\mathcal {X}\\)</span> be <span>\\(\\mathbb {R}^n\\)</span> or a cube <span>\\(Q_0\\subsetneqq \\mathbb {R}^n\\)</span>. In this article, the authors introduce the localized special John–Nirenberg–Campanato spaces via congruent cubes, <span>\\(jn_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathcal {X})\\)</span>, and show that, when <span>\\(p\\in (1,\\infty )\\)</span>, the predual of <span>\\(jn_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathcal {X})\\)</span> is a Hardy-kind space <span>\\(hk_{(p',q',s)_{\\alpha }}^{\\textrm{con}}(\\mathcal {X})\\)</span>, where <span>\\(\\frac{1}{p}+\\frac{1}{p'}=1=\\frac{1}{q}+\\frac{1}{q'}\\)</span>. As applications, in the case <span>\\(\\mathcal {X}=\\mathbb {R}^n\\)</span>, the authors obtain the boundedness of local Calderón–Zygmund singular integrals and local fractional integrals on both <span>\\(jn_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathbb {R}^n)\\)</span> and <span>\\(hk_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathbb {R}^n)\\)</span>. One novelty of this article is to find the appropriate expression of local Calderón–Zygmund singular integrals on <span>\\(jn_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathbb {R}^n)\\)</span> and the other novelty is that, for the boundedness on <span>\\(hk_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathbb {R}^n)\\)</span>, the authors use the duality theorem to overcome the essential difficulties caused by the deficiency of both the molecular and the maximal function characterizations of <span>\\(hk_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathbb {R}^n)\\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localized special John–Nirenberg–Campanato spaces via congruent cubes with applications to boundedness of local Calderón–Zygmund singular integrals and fractional integrals\",\"authors\":\"Junan Shi, Hongchao Jia, Dachun Yang\",\"doi\":\"10.1007/s13540-024-00307-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(p,q\\\\in [1,\\\\infty )\\\\)</span>, <i>s</i> be a nonnegative integer, <span>\\\\(\\\\alpha \\\\in \\\\mathbb {R}\\\\)</span>, and <span>\\\\(\\\\mathcal {X}\\\\)</span> be <span>\\\\(\\\\mathbb {R}^n\\\\)</span> or a cube <span>\\\\(Q_0\\\\subsetneqq \\\\mathbb {R}^n\\\\)</span>. In this article, the authors introduce the localized special John–Nirenberg–Campanato spaces via congruent cubes, <span>\\\\(jn_{(p,q,s)_{\\\\alpha }}^{\\\\textrm{con}}(\\\\mathcal {X})\\\\)</span>, and show that, when <span>\\\\(p\\\\in (1,\\\\infty )\\\\)</span>, the predual of <span>\\\\(jn_{(p,q,s)_{\\\\alpha }}^{\\\\textrm{con}}(\\\\mathcal {X})\\\\)</span> is a Hardy-kind space <span>\\\\(hk_{(p',q',s)_{\\\\alpha }}^{\\\\textrm{con}}(\\\\mathcal {X})\\\\)</span>, where <span>\\\\(\\\\frac{1}{p}+\\\\frac{1}{p'}=1=\\\\frac{1}{q}+\\\\frac{1}{q'}\\\\)</span>. As applications, in the case <span>\\\\(\\\\mathcal {X}=\\\\mathbb {R}^n\\\\)</span>, the authors obtain the boundedness of local Calderón–Zygmund singular integrals and local fractional integrals on both <span>\\\\(jn_{(p,q,s)_{\\\\alpha }}^{\\\\textrm{con}}(\\\\mathbb {R}^n)\\\\)</span> and <span>\\\\(hk_{(p,q,s)_{\\\\alpha }}^{\\\\textrm{con}}(\\\\mathbb {R}^n)\\\\)</span>. One novelty of this article is to find the appropriate expression of local Calderón–Zygmund singular integrals on <span>\\\\(jn_{(p,q,s)_{\\\\alpha }}^{\\\\textrm{con}}(\\\\mathbb {R}^n)\\\\)</span> and the other novelty is that, for the boundedness on <span>\\\\(hk_{(p,q,s)_{\\\\alpha }}^{\\\\textrm{con}}(\\\\mathbb {R}^n)\\\\)</span>, the authors use the duality theorem to overcome the essential difficulties caused by the deficiency of both the molecular and the maximal function characterizations of <span>\\\\(hk_{(p,q,s)_{\\\\alpha }}^{\\\\textrm{con}}(\\\\mathbb {R}^n)\\\\)</span>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00307-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00307-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

让(p,q在[1,\infty )\),s是一个非负整数,(\alpha \在\mathbb {R}\),并且(\mathcal {X}\)是\(\mathbb {R}^n\)或一个立方体(Q_0\subsetneqq \mathbb {R}^n\)。在这篇文章中,作者介绍了通过全等立方体的局部特殊约翰-尼伦伯格-坎帕纳托空间(jn_{(p,q,s)_{\alpha }}^{textrm{con}}(\mathcal {X})),并证明了当\(p\in (1,\infty )\)、(jn_{(p,q,s)_{\alpha}}^{\textrm{con}}(\mathcal {X}))的前域是一个哈代类空间 (hk_{(p',q'、s)_{\alpha }}^{\textrm{con}}(\mathcal {X})),其中(\frac{1}{p}+\frac{1}{p'}=1=\frac{1}{q}+\frac{1}{q'})。作为应用,在 \(\mathcal {X}=\mathbb {R}^n\) 的情况下,作者得到了局部卡尔德龙-齐格蒙奇异积分和局部分数积分在 \(jn_{(p、q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\)和 \(hk_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\)上的有界性。本文的一个新颖之处在于找到了 \(jn_{(p,q,s)_{\alpha }}^{textrm{con}}(\mathbb {R}^n)\ 上局部卡尔德龙-齐格蒙奇异积分的适当表达式,另一个新颖之处在于,对于 \(hk_{(p,q、s)_{\alpha}^{\textrm{con}}(\mathbb {R}^n)\)上的有界性,作者利用对偶定理克服了由于 \(hk_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\)的分子特征和最大函数特征的不足而造成的本质困难。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localized special John–Nirenberg–Campanato spaces via congruent cubes with applications to boundedness of local Calderón–Zygmund singular integrals and fractional integrals

Let \(p,q\in [1,\infty )\), s be a nonnegative integer, \(\alpha \in \mathbb {R}\), and \(\mathcal {X}\) be \(\mathbb {R}^n\) or a cube \(Q_0\subsetneqq \mathbb {R}^n\). In this article, the authors introduce the localized special John–Nirenberg–Campanato spaces via congruent cubes, \(jn_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathcal {X})\), and show that, when \(p\in (1,\infty )\), the predual of \(jn_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathcal {X})\) is a Hardy-kind space \(hk_{(p',q',s)_{\alpha }}^{\textrm{con}}(\mathcal {X})\), where \(\frac{1}{p}+\frac{1}{p'}=1=\frac{1}{q}+\frac{1}{q'}\). As applications, in the case \(\mathcal {X}=\mathbb {R}^n\), the authors obtain the boundedness of local Calderón–Zygmund singular integrals and local fractional integrals on both \(jn_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\) and \(hk_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\). One novelty of this article is to find the appropriate expression of local Calderón–Zygmund singular integrals on \(jn_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\) and the other novelty is that, for the boundedness on \(hk_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\), the authors use the duality theorem to overcome the essential difficulties caused by the deficiency of both the molecular and the maximal function characterizations of \(hk_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信