{"title":"量子 KdV 层次和准模态","authors":"Jan-Willem M. van Ittersum, Giulio Ruzza","doi":"10.4310/cntp.2024.v18.n2.a4","DOIUrl":null,"url":null,"abstract":"Dubrovin $\\href{https://doi.org/10.1007/s00023-015-0449-2}{[10]}$ has shown that the spectrum of the quantization (with respect to the first Poisson structure) of the dispersionless Korteweg–de Vries (KdV) hierarchy is given by shifted symmetric functions; the latter are related by the Bloch–Okounkov Theorem $\\href{https://doi.org/10.1007/JHEP07(2014)141}{[1]}$ to quasimodular forms on the full modular group. We extend the relation to quasimodular forms to the full quantum KdV hierarchy (and to the more general quantum Intermediate Long Wave hierarchy). These quantum integrable hierarchies have been defined by Buryak and Rossi $\\href{https://doi.org/10.1007/s11005-015-0814-6}{[6]}$ in terms of the double ramification cycle in the moduli space of curves. The main tool and conceptual contribution of the paper is a general effective criterion for quasimodularity.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum KdV hierarchy and quasimodular forms\",\"authors\":\"Jan-Willem M. van Ittersum, Giulio Ruzza\",\"doi\":\"10.4310/cntp.2024.v18.n2.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dubrovin $\\\\href{https://doi.org/10.1007/s00023-015-0449-2}{[10]}$ has shown that the spectrum of the quantization (with respect to the first Poisson structure) of the dispersionless Korteweg–de Vries (KdV) hierarchy is given by shifted symmetric functions; the latter are related by the Bloch–Okounkov Theorem $\\\\href{https://doi.org/10.1007/JHEP07(2014)141}{[1]}$ to quasimodular forms on the full modular group. We extend the relation to quasimodular forms to the full quantum KdV hierarchy (and to the more general quantum Intermediate Long Wave hierarchy). These quantum integrable hierarchies have been defined by Buryak and Rossi $\\\\href{https://doi.org/10.1007/s11005-015-0814-6}{[6]}$ in terms of the double ramification cycle in the moduli space of curves. The main tool and conceptual contribution of the paper is a general effective criterion for quasimodularity.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2024.v18.n2.a4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2024.v18.n2.a4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dubrovin $\href{https://doi.org/10.1007/s00023-015-0449-2}{[10]}$ has shown that the spectrum of the quantization (with respect to the first Poisson structure) of the dispersionless Korteweg–de Vries (KdV) hierarchy is given by shifted symmetric functions; the latter are related by the Bloch–Okounkov Theorem $\href{https://doi.org/10.1007/JHEP07(2014)141}{[1]}$ to quasimodular forms on the full modular group. We extend the relation to quasimodular forms to the full quantum KdV hierarchy (and to the more general quantum Intermediate Long Wave hierarchy). These quantum integrable hierarchies have been defined by Buryak and Rossi $\href{https://doi.org/10.1007/s11005-015-0814-6}{[6]}$ in terms of the double ramification cycle in the moduli space of curves. The main tool and conceptual contribution of the paper is a general effective criterion for quasimodularity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.