{"title":"引发 Co 取代 BiFeO3 中弱铁磁性的高自旋 Co3+","authors":"Koomok Lee, Hena Das, Yuki Sakai, Takumi Nishikubo, Kei Shigematsu, Daiki Ono, Takehiro Koike, Naomi Kawamura, Masaichiro Mizumaki, Naoki Ishimatsu, Masaki Azuma","doi":"10.1103/physrevb.110.024422","DOIUrl":null,"url":null,"abstract":"Electric field control of magnetization is expected to be utilized for energy-efficient nonvolatile magnetic memory application. <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">C</mi><msup><mrow><mi mathvariant=\"normal\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math>-substituted <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>BiFe</mi><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> (BFCO) exhibits both ferroelectric polarization (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>∼</mo><mn>100</mn><mspace width=\"4pt\"></mspace><mrow><mi>µ</mi><mi mathvariant=\"normal\">C</mi></mrow><mo>/</mo><mi mathvariant=\"normal\">c</mi><msup><mrow><mi mathvariant=\"normal\">m</mi></mrow><mn>2</mn></msup></mrow></math>) and the spin canting induced weakly ferromagnetic moment (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>∼</mo><mn>0.03</mn><mspace width=\"4pt\"></mspace><msub><mi>µ</mi><mi>B</mi></msub><mo>/</mo><mspace width=\"4pt\"></mspace><mi mathvariant=\"normal\">f</mi><mo>.</mo><mi mathvariant=\"normal\">u</mi><mo>.</mo></mrow></math>) perpendicular to each other at room temperature. Magnetization reversal by electric field was observed in a BFCO thin film. In our previous theoretical calculation, spin canted collinear structure having a weak ferromagnetic moment was stabilized when high-spin <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">C</mi><msup><mrow><mi mathvariant=\"normal\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> was substituted in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>BiFe</mi><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math>. To confirm the presence of high-spin <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">C</mi><msup><mrow><mi mathvariant=\"normal\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> in BFCO, the pressured-induced spin-state transition of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">C</mi><msup><mrow><mi mathvariant=\"normal\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> was investigated by first-principles calculations and Co <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>K</mi><mi>β</mi></mrow></math> synchrotron x-ray emission spectroscopy. We investigated the spin state of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">C</mi><msup><mrow><mi mathvariant=\"normal\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> during the pressure-induced structural transition from <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>R</mi><mn>3</mn><mi>c</mi></mrow></math> to <i>Pnma</i>. As a result, a pressure-induced transition from high-spin to low-spin <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">C</mi><msup><mrow><mi mathvariant=\"normal\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> was predicted. Moreover, the presence of high-spin <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">C</mi><msup><mrow><mi mathvariant=\"normal\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> at ambient pressure was confirmed in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>BiF</mi><msub><mi mathvariant=\"normal\">e</mi><mrow><mn>0.8</mn></mrow></msub><mi mathvariant=\"normal\">C</mi><msub><mi mathvariant=\"normal\">o</mi><mrow><mn>0.2</mn></mrow></msub><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> by observing the decrease of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>K</mi><msup><mi>β</mi><mo>′</mo></msup></mrow></math> peaks of Co <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>K</mi><mi>β</mi></mrow></math> x-ray emission spectra under pressure. This study provides evidence that the weak ferromagnetism of BFCO is attributed to high-spin <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">C</mi><msup><mrow><mi mathvariant=\"normal\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> and provides insight that may help to enhance weak magnetization by substitution of other elements.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"298 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-spin Co3+ as a trigger of weak ferromagnetism in Co-substituted BiFeO3\",\"authors\":\"Koomok Lee, Hena Das, Yuki Sakai, Takumi Nishikubo, Kei Shigematsu, Daiki Ono, Takehiro Koike, Naomi Kawamura, Masaichiro Mizumaki, Naoki Ishimatsu, Masaki Azuma\",\"doi\":\"10.1103/physrevb.110.024422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric field control of magnetization is expected to be utilized for energy-efficient nonvolatile magnetic memory application. <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">C</mi><msup><mrow><mi mathvariant=\\\"normal\\\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math>-substituted <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>BiFe</mi><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> (BFCO) exhibits both ferroelectric polarization (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>∼</mo><mn>100</mn><mspace width=\\\"4pt\\\"></mspace><mrow><mi>µ</mi><mi mathvariant=\\\"normal\\\">C</mi></mrow><mo>/</mo><mi mathvariant=\\\"normal\\\">c</mi><msup><mrow><mi mathvariant=\\\"normal\\\">m</mi></mrow><mn>2</mn></msup></mrow></math>) and the spin canting induced weakly ferromagnetic moment (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>∼</mo><mn>0.03</mn><mspace width=\\\"4pt\\\"></mspace><msub><mi>µ</mi><mi>B</mi></msub><mo>/</mo><mspace width=\\\"4pt\\\"></mspace><mi mathvariant=\\\"normal\\\">f</mi><mo>.</mo><mi mathvariant=\\\"normal\\\">u</mi><mo>.</mo></mrow></math>) perpendicular to each other at room temperature. Magnetization reversal by electric field was observed in a BFCO thin film. In our previous theoretical calculation, spin canted collinear structure having a weak ferromagnetic moment was stabilized when high-spin <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">C</mi><msup><mrow><mi mathvariant=\\\"normal\\\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> was substituted in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>BiFe</mi><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math>. To confirm the presence of high-spin <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">C</mi><msup><mrow><mi mathvariant=\\\"normal\\\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> in BFCO, the pressured-induced spin-state transition of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">C</mi><msup><mrow><mi mathvariant=\\\"normal\\\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> was investigated by first-principles calculations and Co <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>K</mi><mi>β</mi></mrow></math> synchrotron x-ray emission spectroscopy. We investigated the spin state of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">C</mi><msup><mrow><mi mathvariant=\\\"normal\\\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> during the pressure-induced structural transition from <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>R</mi><mn>3</mn><mi>c</mi></mrow></math> to <i>Pnma</i>. As a result, a pressure-induced transition from high-spin to low-spin <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">C</mi><msup><mrow><mi mathvariant=\\\"normal\\\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> was predicted. Moreover, the presence of high-spin <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">C</mi><msup><mrow><mi mathvariant=\\\"normal\\\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> at ambient pressure was confirmed in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>BiF</mi><msub><mi mathvariant=\\\"normal\\\">e</mi><mrow><mn>0.8</mn></mrow></msub><mi mathvariant=\\\"normal\\\">C</mi><msub><mi mathvariant=\\\"normal\\\">o</mi><mrow><mn>0.2</mn></mrow></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> by observing the decrease of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>K</mi><msup><mi>β</mi><mo>′</mo></msup></mrow></math> peaks of Co <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>K</mi><mi>β</mi></mrow></math> x-ray emission spectra under pressure. This study provides evidence that the weak ferromagnetism of BFCO is attributed to high-spin <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">C</mi><msup><mrow><mi mathvariant=\\\"normal\\\">o</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> and provides insight that may help to enhance weak magnetization by substitution of other elements.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"298 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.024422\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.024422","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
High-spin Co3+ as a trigger of weak ferromagnetism in Co-substituted BiFeO3
Electric field control of magnetization is expected to be utilized for energy-efficient nonvolatile magnetic memory application. -substituted (BFCO) exhibits both ferroelectric polarization () and the spin canting induced weakly ferromagnetic moment () perpendicular to each other at room temperature. Magnetization reversal by electric field was observed in a BFCO thin film. In our previous theoretical calculation, spin canted collinear structure having a weak ferromagnetic moment was stabilized when high-spin was substituted in . To confirm the presence of high-spin in BFCO, the pressured-induced spin-state transition of was investigated by first-principles calculations and Co synchrotron x-ray emission spectroscopy. We investigated the spin state of during the pressure-induced structural transition from to Pnma. As a result, a pressure-induced transition from high-spin to low-spin was predicted. Moreover, the presence of high-spin at ambient pressure was confirmed in by observing the decrease of peaks of Co x-ray emission spectra under pressure. This study provides evidence that the weak ferromagnetism of BFCO is attributed to high-spin and provides insight that may help to enhance weak magnetization by substitution of other elements.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter